

Eddy-driven oxygen supply to the eastern tropical North Atlantic

Johannes Hahn, Peter Brandt, Jöran Kemme

PIRATA-23 Meeting Marseille 23.10.2018

Oxygen distribution and circulation in the tropical Atlantic

adapted from Hahn et al. (2017)

Oxygen distribution and circulation in the eastern tropical North Atlantic

Ventilation pathways to the eastern tropical North Atlantic

Brandt et al. 2015

Multi-decadal and decadal O₂ trend along 23°W

<u>Multi-decadal (1972 – 2013):</u>

200m – 400m: -2.9 µmol kg⁻¹ decade⁻¹

400m – 1000m: -1.5 µmol kg⁻¹ decade⁻¹

Decadal (2006 – 2015):

200m - 400m: -6.2 µmol kg⁻¹ decade⁻¹

400m – 1000m: +4.1 µmol kg⁻¹ decade⁻¹

O₂ budget with multi-decadal (1972-2013) O₂ trend

 $C + K_{\rho}\partial_{zz}O_2 + K_e\partial_{yy}O_2 + (-\underline{u}\cdot \mathcal{V}O_2) - \partial_tO_2 \stackrel{\text{def}}{=} 0$ (balance defined)

O₂ budget (multi-decadal vs. decadal O₂ trend)

 $C + K_{\rho}\partial_{zz}O_2 + K_e\partial_{yy}O_2 + (-\underline{u}\cdot \nabla O_2) - (\partial_t O_2)^{(1)} \stackrel{\text{def}}{=} 0$ (balance defined) $C + K_{\rho}\partial_{zz}O_{2} + K_{e}\partial_{yy}O_{2} + (-\underline{u}\cdot \nabla O_{2}) - (\partial_{t}O_{2})^{(2)} \neq 0$ (imbalanced)

(1) ... period 1972-2008 (2) ... period 2006-2015

O₂ budget (multi-decadal vs. decadal O₂ trend) $C + K_{\rho}\partial_{zz}O_{2} + K_{\rho}\partial_{yy}O_{2} + (-\underline{u}\cdot \nabla O_{2}) - (\partial_{t}O_{2})^{(1)} \stackrel{\text{def}}{=} 0$ (balance defined) + $(K_{o}\partial_{zz}O_{2})^{(2)}$ + $(K_{e}\partial_{yy}O_{2})^{(2)}$ + $(-\underline{u}\cdot \nabla O_{2})^{(2)}$ - $(\partial_{t}O_{2})^{(2)}$? (consumption/ventilation 0 changed?) (1) ... period 1972-2008 (2) ... period 2006-2015 130 m <u>130m – 350m:</u> 200 m slight shallowing of deep oxycline 300 m residual supply 400 m **OMZ core** - trend 1 (1972-2008) <u>350m – 800m:</u> 500 m trend 2 (2006-2015) homogeneous consumption meridional eddy increase of residual 600 m supply supply over depth diapycnal supply residual for trend 1 700 m (1972 - 2008)residual for trend 2 (2006 - 2015)800 m ഥ −12 -2 -10-8 -6 -4 0 2 6 8 10 12 O_2 change [μ mol kg⁻¹ yr⁻¹] from Hahn et al. (2017)

Two methods to estimate the eddy-driven oxygen flux (Hahn et al. 2014)

(I) Eddy flux correlation

$$\mathcal{F}_{O_2}^{(1)} = \left\langle \mathcal{V} O_2' \right\rangle$$

→ analysis based on moored observations

Two methods to estimate the eddy-driven oxygen flux (Hahn et al. 2014)

Temporal coverage of moored and shipboard observations

Temporal coverage of moored and shipboard observations

Temporal coverage of moored and shipboard observations

$$H(\mathbf{z}_{s}) = H_{0} \times \sin(k\mathbf{z}_{s} + Q_{0}) + H_{ave}$$

(Zhang et al. 2013)

(Zhang et al. 2013)

(Zhang et al. 2013)

Eddy diffusivity profiles from altimetry along 23°W

Eddy diffusivity profiles from altimetry along 23°W

Meridional oxygen flux along 23°W

- two methods: (1) $F_{O_2}^{(1)} = \langle V' O_2' \rangle$ (2) $F_{O_2}^{(2)} = -K_e \frac{dO_2}{dV}$

 $F < 0 \implies$ southward flux

Meridional oxygen flux along 23°W

- two methods: (1) $F_{O_2}^{(1)} = \langle V' O_2' \rangle$ (2) $F_{O_2}^{(2)} = -K_e \frac{dO_2}{dV}$

 $F > 0 \implies$ northward flux

 $F < 0 \implies$ southward flux

Time varying eddy-driven oxygen supply

- Flux divergence: $-\operatorname{div} F_{O_2}(t, y, z) = K_e(t, y, z) \times \frac{\operatorname{d}^2 O_2(y, z)}{\operatorname{d} v^2}$

6°S

4°

2°

0

2°

6°

8°

10°

12°

14°N

Time varying eddy-driven oxygen supply (average between 6°N-14°N)

13

Summary

(1) Parametrization of EKE / Eddy-diffusivity:

- ➡ regionally varying eddy diffusivity from moored observations and respective parametrization for satellite observations
- ➡ estimate of time varying eddy diffusivity

(2) Time varying eddy-driven O₂ supply:

- ➡ interannual variability of eddy-driven O₂ supply is up to 50% of its average (smaller at depth)
- ⇒ anomaly of cumulated eddy-driven O₂ concentration is in phase with observed decadal O₂ change

(3) Relative impact in time varying O₂ budget:

- \Rightarrow eddy-driven O₂ supply: has likely contributed to decadal O₂ change, but not major driving mechanism
- \implies advection: still seems major driver for decadal O₂ change

Changes in the advective oxygen supply

Changes in the advective oxygen supply

- advective O₂ flux across 23°W from 13 ship sections along 23°W (2006-2015)
 - rough estimate of advective O₂ supply to ,ETNA OMZ' by considering respective box volume (*Hahn et al. 2017*)

- advective O₂ flux across 23°W from 13 ship sections along 23°W (2006-2015)
 - rough estimate of advective O₂ supply to ,ETNA OMZ' by considering respective box volume (*Hahn et al. 2017*)

Hahn et al. (2017)

- mesoscale eddies have universal vertical structure (*Zhang et al. 2013*) considering normalized pressure anomaly $p_n \sim H(z)$

- mesoscale eddies have universal vertical structure (*Zhang et al. 2013*) considering normalized pressure anomaly $p_n \sim H(z)$

$$H(z_{s}) = H_{0} \times \sin(kz_{s} + q_{0}) + H_{ave}$$
$$\mu \sqrt{U}_{e} = EKE$$

