Oxygen changes in the tropical North Atlantic in connection to meridional overturning circulation and subtropical cell variability Peter Brandt^{1,2}, Sunke Schmidtko¹ and Johannes Hahn¹ ¹GEOMAR Helmholtz Centre for Ocean Research Kiel and ²Kiel University, Germany

SEOMAR Oxygen Change in the Ocean (1960-2010)

0-1,200 m

SEOMAR Oxygen Change in the Ocean (1960-2010)

Global oceanic oxygen content decreased by more than 2% since 1960

- About 50% of changes in the upper 1000m can be explained due to warming induced solubility changes
- Changes in the deeper ocean may have their origin in basin-scale multidecadal variability, oceanic overturning slow-down and a potential increase in biological consumption

Schmidtko et al. 2017

- Tight relationship between decreasing O₂ inventories and increasing ocean heat content
- Relationship at shallow depths consistent with temperature dependence of solubility
- In the thermocline and deeper layers, steeper relationship indicates that ventilation and circulation changes play a more important role

Ito et al. 2017

Christian-Albrechts-Universität zu Kie

Subduction Rate and Response to Global Warming

- IPCC AR4 model analysis
- Decreasing lateral induction due to a shallower winter mixed layer depth
- Also decreasing vertical pumping

Thermocline Ocean Ventilation and O_2 Consumption

Weakening of Subtropical Cells in the Pacific associated with reduced oxygen along water mass pathways (Duteil et al. 2014)

| U

Christian-Albrechts-Universität zu Kiel

During SFB754 we focused on 23°W section

Christian-Albrechts-Universität zu Kiel

GEOMAR Oxygen Change along 23°W (2006-2016)

- O₂ reduction at the deep oxycline (shallowing of OMZ)
- ▶ O₂ increase above (150-200m)
- ▶ O₂ increase below 350m

Mechanisms of Thermocline Oxygen Changes

Mechanisms of Thermocline Oxygen Сhanges

Mechanisms of Thermocline Oxygen Сhanges

Mechanisms of Thermocline Oxygen Сhanges

- STC in GECCO assimilation
- Multi-decadal variability with possible impact on upper 250m

Rabe et al. 2008

 Moored EUC measurements at 23° W show strengthening of EUC of about 2.5 Sv per decade

EUC transport update

Brandt et al. 2014

 Ekman divergence show similar variability (depending on the wind product)

C A U Christian-Albrechts-Universität zu Kiel

GEOMAR Oxygen Change in the deep Ocean (1960-2010)

1,200 m-sea floor

GEOMAR Effect of AMOC on Atlantic STCs

- Without AMOC: almost symmetric STCs in the Atlantic
- Thermocline warming due to AMOC weakening in water housing experiment

EQ

Latitude (°)

10 N

300

400

500

С

Christia

30 S

Chang et al. 2008

20 S

10 S

Winds + MOC

2

Α

5°N

Equatorial oxygen maximum

Deep oxycline at about 300m or σ_{θ} =26.8 kg/m³

Southerm hemisphere water reaches far into the North Atlantic

Christian-Albrechts-Universität zu Kiel

U

GEOMAR Water mass distribution and ventilation

Tropical North Atlantic is dominantly ventilated from the southern hemisphere due to presence of AMOC

•

blue: more SA water

Christian-Albrechts-Universität zu Kiel

blue: more oxygen, less salinity

Water mass distribution GEOMAR and ventilation

Regional pattern at OMZ core: ventilation from southern hemisphere up to 12°N

Calculated from the MIMOC climatology in µmol kg⁻¹

Oxygen-Salinity relation:

red: more oxygen, more salinity

25

30

35

40

blue: more oxygen, less salinity •

80

60

40

20

0

-20

-40

-60

-80

GEOMAR Decadal ventilation changes

Do the oxygensalinity relation changes for different decades?

GEOMAR Decadal ventilation changes

During the recent decade ventilation in the upper 300m of the tropical North Atlantic south of about 12°S seems to be associated with lowsaline waters, while around 1975 ventilation with highsaline waters reaches far more south

GEOMAR Water mass distribution and ventilation

Southern hemisphere water is older but higher in oxygen
 AMOC weakening: age decreases but O₂ reduces?

- Large number of processes result in oxygen changes on different timescales
- AMOC and STC likely to have strong impact on ventilation pathways and oxygen content in the tropical Atlantic
- Comparison of observed mean O₂ distribution and its changes and model simulations: prospects for improving model dynamics and parameterizations