Examining the role of model bias in limiting tropical Atlantic prediction skill

Ingo Richter¹, Ping Chang², Xue Liu²

¹Application Laboratory, JAMSTEC, Yokohama, Japan ²Texas A&M University, College Station, TX, USA

> PIRATA 23 Meeting Marseille, France 23 October 2018

The problem

SST bias in CMIP5 piControl

JJA SST bias in piControl ensemble

Prediction skill in the equatorial Atlantic

from Richter et al. 2018

In the tropical Atlantic:

Previous studies

- noise plays important role (Richter et al. 2014b, 2019)
- some models reproduce variability patterns despite pronounced biases (Richter et al. 2014a)
- coupled feedbacks cut short by seasonal ITCZ migration (Richter et al. 2017)
- remote influences strong (Richter et al. 2019, under review)
- SST biases do not affect reproduction of sfc wind anomalies (Richter et al. 2018)

Conflicting views

arguments in favor of high predictability

- Bjerknes feedback plays a crucial role in the equatorial Atlantic (Keenlyside and Latif 2007; Lübbecke et al. 2014; Deppenmeier et al. 2016; Dippe et al. 2017)
- skillful prediction at 5-6 months lead time may be possible (Keenlyside and Latif 2007; Ding et al. 2015)

counter arguments

- equatorial mode not self-sustained (Zebiak 1993)
- low prediction skill despite model improvement (Stockdale et al. 2006; Richter et al. 2017)
- lack of consistent Pacific influence (Chang et al. 2007)

Goal of this study

- reexamine the link between bias and prediction skill in a large multi-model ensemble (cont. from Richter et al. 2018)
- CMIP5 contains many models but does not feature seasonal prediction experiments
- -> use CMIP5 output to derive statistical prediction model
- statistical model to be used: Linear Inverse Model (LIM)

Basic idea behind LIM

- extract dynamical properties from observed statistics
- assume linear system

$$\frac{d\boldsymbol{x}}{dt} = L\boldsymbol{x} + \boldsymbol{\xi}(\boldsymbol{t})$$

- determine L using essentially lagged linear regression (usually in PC space)
- most commonly used on SST
- identify "precursor" of warm/cold events

Idea of this study

- model misrepresentation of TAV will be reflected in LIM
- such a "distorted" LIM will have inferior prediction skill
- examine the link between mean state biases and prediction skill using 35 CMIP5 piControl models

Data & Method

- data: CMIP5 piControl simulations and NCEP/NCAR reanalysis
- step 1
 - construct LIM from NCEP-R using training period 1948-1999
 - predict SST for validation period 2000-2017
- step 2
 - construct LIM from each piControl model
 predict NCEP-R SST for period 1948-2017

Anomaly corr. (ACC) of NCEP-R LIM

training: 1948-1999; validation: 2000-2017lead = 3 months

SST biases in some selected CMIP5 piControl models

Anomaly correlation (ACC) of LIM prediction and NCEP-R (lead=3)

training: piControl; validation: 1948-2017 (NCEP-R)

LIM ACC minus persistence (lead=3)

ATL3 SST: LIM ACC vs abs(error)

abs(error) averaged over seasonal cycle

NTA SST: LIM ACC vs abs(error)

STA SST: LIM ACC vs abs(error)

Conclusions

- trained linear inverse model (LIM) on SST from piControl simulations
- LIMs perform better than most GCMs at predicting tropical Atlantic SSTs
- link to mean-state SST biases weak to non-existent
- further evidence that mean-state biases not the main reason for poor prediction skill

Caveats/Future work

- only preliminary results; further analysis necessary
 - -seasonal stratification
 - different metrics of model performance
 sensitivity to hindcast period
- construct more complete statistical model using additional variables: sfc wind, thermocline depth

Linear inverse model (LIM)

linear system:

$$\frac{d\boldsymbol{x}}{dt} = L\boldsymbol{x} + \boldsymbol{\xi}(\boldsymbol{t})$$

x: state vector; L: linear operator (matrix); $\xi(t)$: noise forcing

integration:

$$x(t + \tau_0) = \exp(L\tau_0) x(t)$$

solve for L:

$$L = \tau_0^{-1} \ln\{C(\tau_0)C(0)^{-1}\}$$

with $C(\tau_0) = \langle x(t + \tau_0) x^T(t) \rangle$, $C(0) = \langle x(t) x^T(t) \rangle$

The pie of predictability

The pie of predictability (idealized model)

predictand (e.g. SST field)

Noise takes out one bite

Noise and model error

Equatorial Atlantic variability

Interannual Variability in the equatorial Atlantic

- warm events (Atlantic Niños) preferentially occur in boreal summer
- typical amplitude: 1K
- impact on rainfall over the surrounding continents
- coupled air-sea feedbacks (Bjerknes feedback) are thought to play a role

Example of an Atlantic Niño: 1988 event JJA SST anomalies [K]; dataset: OISST

Composite evolution of Atlantic Niños units: K (SST), m/s (U), 0.1*m (Z20)

ERA-Interim and ORAS-4

ATL4 variance of sfc zonal wind

ATL4 ACC of sfc zonal wind ACC calculated with respect to CTRL

Composite lat-time section of Atl Niño precip (shd; mm/d) and sfc zonal wind (cnt; m/s) data: GPCP and ERA-Int; ave: 40-10W

EOF#1 of JJA SST (shading; K) and regressed sfc wind stress (vectors) and precip (contours; CI=0.5 mm/day)

EOF#1 of JJA SST in HadISST (1950-2010) and CMIP5 models

July 1988 SST in CTRL and Atl_bias Atlantic Niño event

ACC of ATL4 u_sfc and eqAtl precip SINTEX-F bias experiments

Richter et al. 2017, revised