PIRATA 23 Meeting Marseille, 22 Oct 2018

Drivers of the Atlantic Niño II – the role of warm water volume changes

Joke F. Lübbecke¹, Kyle J. Turner², Natalie J. Burls², Anna von Brandis¹, and Martin Claus¹

¹ GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany ² COLA, George Mason University, Fairfax, VA, USA

Tropical Atlantic SST variability

1. EOF of the rainfall variability (grey) in JJA and SST and wind anomalies

Atlantic Niño mode

PIRATA 23 meeting Marseille | 22-Oct-2018

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Tropical Atlantic SST variability

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Tropical Atlantic temperature variability

Temperature variance

Highest temperature variability along thermocline

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Tropical Atlantic temperature variability

WWV mode and Atlantic Niño

Relation between WWV mode and occurrence of Atlantic Niño events has been suggested by Ding et al., 2010 and Hu et al., 2013

Regression of z20, SST, and wind stress anomalies onto PC1, leading PC1 by 5, 2, and 0 months

(Hu et al., 2013)

- Heat accumulation in the northwestern tropical Atlantic
- Propagates eastward along Equator

WWV mode and Atlantic Niño

Relation between WWV mode and occurrence of Atlantic Niño events has been suggested by Ding et al., 2010 and Hu et al., 2013

Regression of z20, SST, and wind stress anomalies onto PC1, leading PC1 by 5, 2, and 0 months (Hu et al., 2013)

Seasonality of relationship?

Data Sets

Observational Data Sets

- SST
 - NOAA OI SST (1982 to 2016)
 - HadISST (1980 to 2016)
- SSH (as proxy for thermocline depth)
 - AVISO (1993 to 2015)

Reanalysis Products

Monthly temperature and SSH output from

- NCEP GODAS (1980 to 2016)
- ECMWF ORA-S4 (1980 to 2015)
- SODA 2.2.4 (1980 to 2008)
- ECCOv4 (1992 to 2015)

SST and WWV

 reduced gravity and depth of interface at rest are set such that the gravity wave speed is 1.5 ms⁻¹ (2nd baroclinic mode in the tropical Atlantic)

linear SWM to examine purely

wind-driven component of

- forced with monthly wind stress from ERA Interim for the period 1979-2011
- Interface displacement anomalies as proxy for the thermocline displacement or warm water depth (WWD)

PIRATA 23 meeting Marseille | 22-Oct-2018

Correspondence between ORA-S4 WWV and WWD anomalies from the SWM for 1984 to 2011

Shallow Water Model

Relationship between heat content and SST anomalies

- No significant correlation in boreal summer, when Atlantic Niño mode peaks
- Highest correlation for September to December EEA SSTA with equatorial SSH leading by a couple of months
- influence of equatorial HC anomalies mainly on the development of EEA SST anomalies in boreal fall/winter, i.e. the Atlantic Niño II

Relationship between heat content and SST anomalies

Reanalysis products agree that strongest relation between EEA SST and equatorial SSH occurs during boreal fall and winter months, Very similar results when WWV is used instead of SSH

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Look at 2001 cold and 1997 warm winter event (Atlantic Niño II)

2001 cold event

ORA-S4 WWV an. [10¹¹ m³]

- Low WWV (thermocline shoaling) along the Equator in late summer, reinforced in fall/winter
- Connection to northwestern tropical Atlantic

2001 cold event

- Also some indication of connection to the south
- Well reproduced by SWM

2001 cold event

- Anomalous Ekman suction leads to a shoaling of the thermocline in the NTA in boreal spring
- Signal spreads westward, then equatorward

WWD [m] and wind stress anomalies [Nm⁻²] from SWM

1997 warm event

- High WWV (thermocline deepening) along the Equator from late summer, intensifying in fall/winter
- Connection to northwestern tropical Atlantic

1997 warm event

- strong build-up of heat in the western basin, both north and south of the equator, in spring and summer
 - Signal propagates towards EEA in late boreal summer and intensifies there until fall/winter
- SWM is able to reproduce evolution

- "Tilt" and "WWV" modes to describe equatorial Atlantic upper ocean temperature variability (Bunge and Clarke, 2009; Hu et al., 2013)
- WWV mode plays more important role for development of Atlantic Niño II events in boreal winter
- Both Atlantic Niño II cold and warm event connected to offequatorial HC anomalies that propagate to western boundary and along Equator
- Origin of the HC anomalies in off-equatorial northwestern Atlantic in agreement with Hu et al., (2013) who attributed this to anomalous wind stress curl associated with the Atlantic meridional mode