

What Processes control the Wind

in the Boundary-Layer of the ITCZ

Hervé Giordani, P. Peyrillé and A. Vasconcelos

CNRM/GAME (Météo-France, CNRS), 42, Av. G. Coriolis 31057 Toulouse

- Convergence of humidity is the engine of precipitation
- Processes involved in the wind convergence in the ITCZ
- Low-level wind-convergence forces deep convection
- Deep convection/latent heat release induces low-level convergence
- Circular relationship between low-level convergence and deep convection
- Low-level Convergence a cause or a consequence of deep convection ?
- Roles of ABL/SST versus deep tropospheric processes in influencing low-level wind-convergence

Meso-NH Configuration

	Meso-NH : Lafo Non hydrostatic anelastic model covering a wide range of scales u, v,w, θ , 4 water phases as pronostic variables Full physical package	re et al. (1 5	.998); Lac et al. (2018)
• • • • • •	Set up of the model for our study : Pronostics TKE, 1D Turbulence Cuxart et al. (2000) and Mixed-phase cloud parameterization EDKF mass-flux scheme for shallow convection and thermals Deep convection from Kain-Fritsch-Bechtold Radiation from ECMWF	nd Bougea Pinty Perga Bech	ault Lacarrère (1989) and Jabouille (1998) aud et al. (2009) told et al. (2005)
	Surface (SURFEX interface) Interactive continent with prescribed vegetation SST prescribed (ERA-I/6h) Ocean-atmosphere fluxes computed from ECUME3 parameteriz	(Noill	nan and Planton, 1989) (Belamari 2005)
 Numerical Configuration : Domain Extension : 65W-19E 21S-21N Δx=Δy=10 km with convection parametrized (900x480 points) Δz from 10 m to 600 m with 70 verticals levels 			
י י	1-month simulation from 1-30 June 2010, with hourly output ! Initial fields and lateral boundary conditions from ERAInterim		

✓ For information :∆t=30s with 4th order centered advection scheme + Runge-Kutta temporal scheme

W at 511.601m

Surface Parameters

Reference Vector

 Upward motion and precipitation are collocated with highest SSTs

Reference Vector

 Subsidence close to the Equator induced by the Cold Tongue

Marine Atmospheric Boundary-Layer

MAEL

Linear Mixed-Layer Model Back & Bretherton, 2009, J. Clim

Laplacian of Closed Pressure in the MABL

Dynamic and Pressure forcings balances

Circulation \iff Diabatic Processes $\implies \frac{\partial \delta}{\partial t} \simeq 0$

Wind-Divergence - Dynamic - Diabatic Adjustment

Boundary Layer and Free Tropospheric Contributions

Laplacian of the free Troposphere Closed Pressure Laplacian of the free Troposphere Closed Pressure 1/s^2*1.E9 20N B 0 20S 60W 30W 0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1

Mean Divergence

Pressure Trends in the MABL

Horizontal Advection

$\textbf{Diabatic} \rightarrow \textbf{Wind-Divergence Trend}$

Conclusion

Sources of low-level wind-convergence in the ITCZ :

- Boundary-Layer Pressure (Laplacian)
- Deformation field in the channel of Easterly waves
- Mitigation by the Free-Tropospheric Pressure in the channel and along the Brazilian coasts

Diabatic Sources of low-level wind-convergence in the ITCZ :

- Heat Convergence
- Heat Convergence coupled to SST

Convergence in the ITCZ

Divergence over the Equatorial Front

