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Is there significant turbulent cooling at off-equatorial locations?
Does it vary seasonally?

In the absence of strong mean shear, what drives mixing
and cooling off the equator?

Questions

Approach
Hourly measurements from PIRATA moorings and
one-dimensional models (KPP, PWP).
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Relationship between residual and wind speed

Seasonally, more cooling occurs when wind is weak

All PIRATA locations
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MLD: shallowest depth where Kv is less than 0.001m2 s-1

Methods
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Comparison of Kv-based and density-based MLD
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Results at 4oN, 23oW
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Data from the
4oN, 23oW mooring

Fill with linear interpolation

Leave gaps when MLD is
within 10 m of deepest vel.
measurement



25 Apr 30    5 May 10    

-25

-20

-15

-10

-5

0

De
pt

h 
(m

)

Te
m

pe
ra

tu
re

 (
o C)

28

28.5

29

29.5

30

30.5

25 Apr 30    5 May 10    

-25

-20

-15

-10

-5

0

De
pt

h 
(m

)

Zo
na

l v
el.

 (c
m

 s
-1

)

-30

-20

-10

0

10

20

30

40

25 Apr 30    5 May 10    

-25

-20

-15

-10

-5

0

De
pt

h 
(m

)

M
er

id.
 ve

l. (
cm

 s
-1

)

-60

-40

-20

0

20

Temperature, MLD

Merid. vel.

Zonal vel.
Diurnal temp.

Near-inertial waves,
semidiurnal velocity

Temp., vel. during
April-May



Stratification

Shear

Richardson number, MLD

Low shear

High stability

2017

Strong seas. cycles
of stratification, shear



Apr    Jun    Aug    Oct    Dec    Feb    
-300

-200

-100

0

100

200

-400

-300

-200

-100

0

100

-6

-4

-2

0

2

4

6

Vertical mixing
and cooling

MLD

Shear at MLD

Q-h

Sh
ea

r (
cm

 s-1
), 

Q
-h

/1
0 

(W
 m

-2
)

M
LD

 (m
)

Kv

T

Kv
*/

10
 (c

m
2  s-1

), 
    

  T
 (o C)

Largest Kv, strongest cooling
when shear is strong,
stratification (      )  is weak

Apr    Jun    Aug    Oct    Dec    Feb

T



9 May 10   11   12   
0

20

40

60

80

100

-6

-4

-2

0

2

4

6

9 May 10   11   12   
-2500

-2000

-1500

-1000

-500

0

15 Aug 16    17    18    
0

20

40

60

80

100

-6

-4

-2

0

2

4

6

15 Aug 16    17    18    19    
-2500

-2000

-1500

-1000

-500

0

Strong cooling (May) Weak cooling (Aug)

Kv

T

Q-h

Shear
Sh

ea
r (

cm
 s-1

)
 Q

-h
 (W

 m
-2

)

K v/1
0 

(c
m

2  s-1
), 

    
   T

 (o C)

Importance of
shear and
stratification



J F M A M J J A S O N D
-50

-40

-30

-20

-10

0

10

20

30

J F M A M J J A S O N D
-50

-40

-30

-20

-10

0

Ve
rt

. t
ur

b.
 h

ea
t fl

ux
 in

to
 M

L 
(W

 m
-2

)

Heat budget residual
(2006-2017)

Model (2017-18)

Ve
rt

. t
ur

b.
 h

ea
t fl

ux
 in

to
 M

L 
(W

 m
-2

)

Full model

No TIWs

No near-
inertial

No vel. < 1 day

Validation and diagnosis

Seasonal cycle from model agrees
well with that of heat budget resid.

Short timescale variability of shear
(periods < 1 day) is most important,
likely due to tides and remotely-forced
internal waves. Near-inertial waves
enhance cooling during winter-spring.
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Results at 15oN, 38oW
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First: weak wind,
surface warming,

Then: stronger wind,
temp. and currents
mixed downward,
episodic ML cooling

Strongest cooling occurs
during summer-fall:
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Phases of seas. cycles are similar, but
model underestimates cooling,
likely because tides and internal waves
are missing.

Turbulent mixing in model is driven
mainly by episodic shear. Weak
influence from diurnal cycle and
near-inertial waves.



Summary and conclusions

There are pronounced seasonal cycles of turbulent cooling
at off-equatorial locations.

Cooling tends to be strongest when winds are weakest and the
mixed layer is thinnest. These conditions lead to enhanced shear
at the base of the ML, which appears to originate mainly from
remotely-forced internal waves with periods < 1 day.

Local wind- and buoyancy-forced mixing accounts for at most
~25% of the seasonal cycle of cooling.

Many unanswered questions remain, including the sources of
remotely-forced shear and turbulence.

These results need verification from direct measurements
of turbulence.



Validation of PWP model at 15oN, 38oW
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