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Equilibrium dynamics of the Benguela system is investigated using the holistic nature of the spatially and
temporally cohesive output of a numerical model. The Regional Ocean Modeling System (ROMS) is used
to simulate the Benguela system in its entirety. It successfully simulates the cool coastal upwelling
regime and its division into seven distinctly separate cells, as well as the large-scale offshore regime
and the respective seasonal fluctuations. It does however, present a cool bias at the coast due to an under-
estimation of the coastal wind drop-off as well as a warm bias offshore in the southern Benguela due to
the overestimation of Agulhas Current input. The Benguela can be divided into northern and southern
regimes, based on dynamic as well as topographic differences. Topographically, the division between
the northern and southern regimes coincides with an abrupt narrowing of the continental shelf toward
the north at 28�S. The large-scale depth-integrated flow to the north of this feature is weak but distinctly
poleward, while to the south the flow regime is governed by the meandering nature of the equatorward
Benguela Current and is the pathway for eddies that originate at the Agulhas retroflection. The poleward
flowing regime of the northern Benguela is tied to the Sverdrup relation, which links meridional transport
with wind stress curl. The Lüderitz upwelling cell at 27�S experiences the most vigorous upwelling
throughout the year and, as a result, offshore volume fluxes in this region are extremely large. This
upwelling cell divides the northern and southern Benguela coastal upwelling systems into separate
regimes, based on the fact that their seasonal signals are out of phase. The offshore gradient of eddy
kinetic energy (EKE) is generally strong in the Benguela system and exceptionally so in the southern
Benguela due to vigorous mesoscale activity offshore of the shelf-edge, originating from the Agulhas ret-
roflection area. The juxtaposition between the steep offshore EKE gradients in the south and much
weaker offshore gradients of EKE in the northern Benguela has different implications for cross-shore
exchanges.

� 2009 Published by Elsevier Ltd.
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1. Introduction

The Benguela is unique among the four major eastern boundary
upwelling systems of the world’s oceans in that both its northern
and southern boundaries are dynamically linked to warm water
current regimes, namely the Angola Current in the north and the
western boundary Agulhas Current in the south (Shannon and
Nelson, 1996; Shillington, 1998; Field and Shillington, 2004;
Shillington et al., 2006). The northern and southern regions of
the Benguela system are therefore subject to influence from the
tropical Atlantic and Indian Oceans, respectively. Low oxygen
water, originating in the tropical Atlantic episodically advects far
south into the northern Benguela upwelling regime and has, often
catastrophic, implications for the living marine resources there
(Shannon and Pillar, 1986; Monteiro and van der Plas, 2006;
Monteiro et al., 2008). In the south, the interaction of the north-
71

72

73

Elsevier Ltd.

: +27 21 650 3979.
).

al. The Benguela: A laboratory
westward path of Agulhas eddies with the upwelling front has
been implicated in advective losses of fish larvae (Duncombe-Rae
et al., 1992).

The upwelling regime of the Benguela system is forced by
south-easterly winds that are set up by the south Atlantic high
pressure system and the continental low pressure trough and is
seasonally modulated by variations of these two pressure systems.
Meridional variations of the wind regime result in differences in
the seasonal cycle of the northern and southern Benguela upwell-
ing regimes such that the seasonal signal is strongest in the south-
ern part of the system, with maximum upwelling intensities
during spring and summer months (Strub et al., 1998).

Another feature, that might also be considered a boundary, of sig-
nificance is the so-called ‘LUCORC’ (Lüderitz Orange river cone) bar-
rier (Hutchings, 2004) that separates the system into northern and
southern regimes on the basis of their different biological and phys-
ical characteristics (Agenbag and Shannon, 1988; Taunton-Clark
and Shannon, 1988; Duncombe-Rae, 2004; Lett et al., 2007). The
LUCORC barrier is commensurate with the Lüderitz upwelling cell,
for comparative modeling studies. Prog. Oceanogr. (2009), doi:10.1016/
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that is often cited as the most vigorous upwelling cell in the world
(Bakun, 1996) and is certainly the most vigorous in the Benguela
upwelling system (Lutjeharms and Meeuwis, 1987).

This paper addresses the equilibrium dynamics of the appar-
ently disparate northern and southern regimes of Benguela system,
including the large-scale circulation patterns as well as the coastal
upwelling regions and their associated nearshore circulation fea-
tures. A brief, systematic comparative discussion is presented that
is based on the spatially and temporally cohesive data obtained
from a model simulation.
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2. Methods

The Regional Ocean Modeling System (ROMS) (Shchepetkin
and McWilliams, 2005) is used to simulate the salient features
of the large-scale circulation patterns as well as the coastal
upwelling features of the Benguela system. It is a split-explicit
and free-surface model that makes the Boussinesq and hydro-
static assumptions when solving the primitive equations. The
model is discretized in the vertical on a sigma, or topography-fol-
lowing stretched coordinate system. In order to maximize com-
puting efficiency, the simulation employs the two-way
embedding capability of ROMS (Debreu and Mazauric, 2006),
which is designed such that the output from a lower resolution
‘parent’ domain provides boundary conditions for the higher res-
olution ‘child’ domain nested within it and the ‘child’ domain in
turn feeds the parent domain. This technique allows for more
consistent boundary conditions than in situ products based on of-
ten temporally and spatially scarce measurements and is far less
costly than running the parent domain at the resolution of the
child.

The parent domain used in this simulation is the eddy-resolving
Southern African Experiment (SAfE), a configuration designed by
Penven et al. (2006) to capture salient oceanographic features
around southern Africa. The SAfE domain is built on a Mercator
grid, spanning 2.5�W–54.75�E and 46.75�S–4.8�S and has a hori-
zontal resolution ranging from 19 km in the south to 27.6 km in
the north. Temperature and salinity open boundary data are sup-
plied by World Ocean Atlas 2005 (WOA: Conkright et al., 2002),
from which, together with QuikSCAT winds, geostrophic and Ek-
man velocities are calculated (based on a reference level of
1000 m).

The child domain encompasses the greater Benguela system,
spanning 3.9�E–19.8�E and 35.6�S–12.1�S, with a horizontal resolu-
tion that ranges from 7.5 km in the south to 9 km in the north. Both
the parent and child grids have 32 sigma-levels that are stretched
so that near-surface resolution increases. The topography for the
nested configuration is based on the 10 GEBCO (GEneral Bathymet-
ric Chart of the Oceans: http://www.gebco.net) product and has
been smoothed in order to avoid possible pressure gradient errors
over steep topography.

The initial conditions of the nested configuration is an ocean at
rest with WOA temperature and salinities for the month of January.
The wind forcing of the model is a climatological wind stress prod-
uct, based on a 0.5� QuikSCAT (Liu et al., 1998) climatology prod-
uct, based on data spanning 2000–2007. The deliberate choice of
using a climatological wind forcing for a simulation that is forced
for multiple years, is in accordance with the focus on equilibrium
dynamics. Moreover, it allows for an investigation of intrinsic, or
unforced, system variability which is not addressed here. The sur-
face fluxes are based on the climatological mean COADS heat and
salt fluxes. The configuration is run for a total of 10 years, the first
2 years of which are required to reach statistical equilibrium. Mod-
el years 3–10 are used to create a climatology from which all of the
analyses in this work are conducted.
Please cite this article in press as: Veitch, J., et al. The Benguela: A laboratory
j.pocean.2009.07.008
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3. Model results

Fig. 1 compares model-derived and satellite Sea Surface Tem-
peratures (SSTs) from the 9 km Pathfinder data set for summer
and winter. The solid white line approximates the position of the
upwelling front and the dotted white line represents the shelf-
edge. Satellite and model-derived data both suggest that a distinct
topographical control exists in the southern Benguela, south of
28�S, such that the offshore extent of the upwelling front is some-
what limited by the shelf-edge. The model also captures large off-
shore expanses of the cool water regime at 27�S and at 30�S. The
model tends to overestimate upwelling near the coast due to an
underestimation of the wind drop-off, so that the alongshore wind
stress is too strong (Capet et al., 2004; Colas et al., 2008). This re-
sults in a coastal SST cool bias of the order of 1.5 �C. The warm bias
in the offshore regions of the southern Benguela system, south of
30�S is a result of topographical smoothing (Speich et al., 2006)
that allows for an overestimation of the flux of Agulhas waters in
the southern Benguela.
E
D

P
R3.1. Large-scale circulation features

The annual mean, large-scale pattern of flow of the Benguela
system is shown in Fig. 2a as streamlines of the depth-integrated
(0–1000 m) volume transport (1 Sv = 106 m3 s�1) and elucidates
the division of the Benguela system into two distinct regimes.
North of Lüderitz the transport streamfunction shows that the gen-
eral flow follows the orientation of the coast and is poleward, with
a relatively low volume flux of between 1–3 Sv. The flow regime
south of Lüderitz is dominated by the north-westerly meandering
path of the Benguela Current and passing Agulhas rings, that also
tends to follow the orientation of the coastline until 30�S, where
it begins to veer offshore.

Transports of the Benguela Current across 30�S, from the coast
to 10�E, as resolved by the model are of the order of measurements
taken during the ‘Benguela Sources and Transports (BEST)’ project
and can be found in the work of Garzoli and Gordon (1996) and
Garzoli et al. (1997). Other than a couple of outliers, model trans-
ports agree well with in situ measurements, particularly between
14� and 15�E where both model and in situ measurements de-
crease from 4 to 2 Sv. Further offshore, at 10�E, model-derived
and in situ measurements are also equivalent and are �6 Sv. Be-
tween these regions of good agreement, model and in situ compar-
isons differ in places due to differently resolved locations of the
core of the Benguela Current.

Between the poleward northern regime and equatorward
southern regime, is an area where flow crosses the bathymetry
(shown in Fig. 2 as shades of grey). Bathymetric contours approx-
imately mimic contours of f/H, where f is the coriolis parameter
and H is the local depth. For a feature characterized by a small
Rossby number, such as in our case (where Ro = U/fL, where U is
a characteristic velocity scale, taken to be 4 cm s�1 and L is a char-
acteristic length scale taken to be 150 km, based on the average
speed and width of the poleward flowing regime, respectively),
planetary vorticity is large compared to relative vorticity and flow
is expected to follow lines of constant f/H. Large-scale flow is in-
deed steered by topography along the shelf and slope, with the
exception of the region between the poleward northern regime
and equatorward southern regime where it veers offshore. The
process that allows the flow to cross the topography in this region
still needs to be elucidated.

It is somewhat counter-intuitive that the prevailing south-east-
erly winds in the northern Benguela are in the opposite direction to
the ambient poleward flow in this region. A possible explanation
could lie in the Sverdrup relation, which links wind stress curl with
for comparative modeling studies. Prog. Oceanogr. (2009), doi:10.1016/
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Fig. 1. Summer and winter mean SSTs, based on model-derived (a and b) and satellite data (c and d). The solid white lines represent the approximate position of the
upwelling front, taken as the most appropriate isotherm during summer and winter months (19 �C and 15.5 �C, respectively). The dotted while line represents the position of
the shelf-edge. Contour interval is 0.5 �C.
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U
Nmeridional velocity. As a transport function, the equation can be

written as follows:

�b
@w
@x
¼ r� s

q0
ð1Þ

where b is the change of the Coriolis parameter with latitude, W is
the transport function (in m3 s�1), s is the wind stress, q0 is the ref-
erence density of seawater, taken to be 1024 kg m�3.

Fig. 2b is a plot of the transport streamfunction (for the upper-
1000 m active layer) as derived from the Sverdrup relation and re-
veals the background flow regime that would be induced by the
curl of the wind stress alone. It gives a convincing impression that
the poleward flow in the northern Benguela and its offshore advec-
tion in the vicinity of Lüderitz is indeed a product of the Sverdrup
Please cite this article in press as: Veitch, J., et al. The Benguela: A laboratory
j.pocean.2009.07.008
relation (Eq. (1)), forcing an average southward flow in the upper-
1000 m at the eastern boundary of the order of �2 cm s�1. Flow in-
duced by the Sverdrup relation in the southern Benguela is likely to
be masked by the relatively strong northwestward flow of the
Benguela Current and the influence of eddies passing from the In-
dian Ocean into the south Atlantic Ocean.
3.2. Upwelling regime

The bold line in Fig. 3a gives an indication of the alongshore var-
iability in annual mean upwelling intensities, based on model-de-
rived annual mean upward volume fluxes (per kilometer of
coastline) across 25 m depth, within approximately 30 km of the
coast. Upwelling intensity along the coast is far from contiguous,
for comparative modeling studies. Prog. Oceanogr. (2009), doi:10.1016/
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the bold, solid and dotted lines, respectively. The normalized seasonal mean standard deviation is shown in (b).
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but instead is characterized by a number of cells of enhanced activ-
ity that are associated with similar fluctuations in the nature of the
alongshore wind, which on the smaller scale is related to the orien-
tation of the coastline. With the use of satellite-derived SST maps
Please cite this article in press as: Veitch, J., et al. The Benguela: A laboratory
j.pocean.2009.07.008
Demarcq et al. (2003) similarly observed the fragmentation of
the Benguela upwelling system into separate cells and they also
noted that near Lüderitz was the region of most intense upwelling
in the Benguela system and is consistent with our model results
for comparative modeling studies. Prog. Oceanogr. (2009), doi:10.1016/
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(refer to Fig. 3a). Seven distinctly separate upwelling cells can be
discerned in the model data, with peaks at approximately 33�S,
30�S, 27.5�S, 24�S, 21�S and 17�S, which can be assigned the nam-
ing convention of Lutjeharms and Meeuwis (1987): Columbine,
Namaqua, Lüderitz, Walvis Bay, Namibia and Cunene cells, respec-
tively. Demarcq et al. (2003) showed that the highly active Lüderitz
upwelling region is somewhat paradoxical due to its very low con-
centrations of chlorophyll and therefore, productivity (Demarcq
et al., 2007), while the less intense upwelling cells to the north
and south of this are highly productive and support important
demersal and pelagic fisheries (Hutchings, 1992). Fig. 3b is the nor-
malized seasonal standard deviation (i.e. STD/mean) of upwelling
fluxes along the southern African coast from 34�S to just north of
18�S. It reflects the fact that the seasonal upwelling signal is stron-
gest in the southern Benguela and decreases toward the north,
with a slight increase in the far north. The solid and dotted lines
in Fig. 3a represent the summer and winter mean upwelling fluxes
and show that the five southern-most cells (Peninsula, Columbine,
Namaqua, Lüderitz, Walvis Bay) experience greatest upwelling
during summer, while the two northern-most upwelling cells (Na-
mibia and Cunene) are most vigorous during winter.

Table 1 summarizes the annual mean upwelling rates and fluxes
for each of the cells. The Lüderitz cell is the most vigorous, with an
annual mean total upwelling flux of 1.34 Sv and a corresponding
upwelling rate of 11.7 m day�1. While the annual mean upwelling
rates and volume fluxes inherently underestimate (overestimate)
maximum (minimum) upwelling intensities, this is particularly
true for the three upwelling cells to the south of Lüderitz that have
the greatest seasonal standard deviations. However, the annual
mean upwelling fluxes and rates in the southern Benguela upwell-
ing region provide a gauge from which to quantify and compare
the equilibrium state and are 1.2 Sv and 5.2 m day�1, respectively.
Lower seasonal variability in the three northern-most upwelling
cells provides a somewhat more meaningful annual mean upwell-
ing flux and rate estimates of 2.04 Sv and 7.8 m day�1.

Based on the differences in seasonal-phasing, the Lüderitz
upwelling cell may be thought of as separating the more perennial
northern Benguela region (with slight upwelling maximum during
winter) from the strongly seasonal southern Benguela region (with
peak upwelling during summer). The seasonal-phasing of the dif-
ferent regions of the Benguela upwelling system is commensurate
with the seasonal shift of the South Atlantic Anticyclone (SAA) that
moves northwestward in autumn and southeastward in spring
(Preston-Whyte and Tyson, 1993). The northward shift of the
SAA in winter results in the dominance of a westerly wind regime
in the southern Benguela, but does not affect the approximately
perennial upwelling-favourable winds in the northern Benguela.

3.3. Eddy kinetic energy (EKE)

As one of the world’s four major eastern boundary upwelling
systems, the Benguela is unique in that low variability on the shelf
is juxtaposed by exceptionally high variability further offshore (see
Capet et al., 2008). For example, the California system typically has
nearshore variability (measured as EKE) of the order of 40 cm2 s�2,
Table 1
Model-derived annual mean volume fluxes (in Sv: 106 m3 s�1), upwelling rates
(m day�1) and normalized standard deviation (STD) for each of the five upwelling
cells resolved by the model simulation.

Upwelling cell Cun. Namib. WB Lüd. Namq. Colum. Penin.

Length (km) 198 543 278 401 467 120 111
Vol. flux (Sv) 0.47 0.87 0.7 1.34 0.93 0.2 0.07
Rate (m day�1) 8.8 6.4 8.3 11.7 7.4 6.3 2
Seasonal STD 0.14 0.09 0.08 0.13 0.18 0.31 1.06

Please cite this article in press as: Veitch, J., et al. The Benguela: A laboratory
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increasing to �120 cm2 s�2 further offshore. In striking contrast to
this the inshore and offshore variability of the Benguela ranges
from �10 cm2 s�2 to in excess of 500 cm2 s�2, respectively (Capet
et al., 2008). This dichotomy is particularly true of the southern
Benguela regime, which is subject to the influence of passing Agul-
has rings and associated features in the region that has come to be
known as the ‘Agulhas Corridor ‘ (Garzoli and Gordon, 1996) or the
‘Cape Cauldron’ (Boebel et al., 2003).

EKE is used as a measure of variability and is calculated,
throughout the water-column, from model-derived zonal and
meridional velocities. Fig. 4 shows cross-shelf EKE sections typical
of the northern and southern Benguela regimes (at 22�S and 32�S,
respectively). In stark contrast to, for example, the Californian Cur-
rent system (see Fig. 7 in Marchesiello et al., 2003), both the north-
ern and southern Benguela regimes are characterized by isolines of
EKE that tend toward a vertical orientation, extending to depths of
at least 1000 m. This EKE structure is commensurate with a rather
steep and deep-reaching offshore gradient of EKE presenting a,
possibly important, mechanism for cross-shore exchanges in both
the northern and southern regimes.

Although the EKE structures of the northern and southern
Benguela systems share the distinction of steep offshore gradients,
differences between them are striking. The 100 cm2 s�2 isoline is
shown in bold in Fig. 4 and provides a useful measure from which
to compare the two regimes. At the surface in the northern Bengu-
ela, EKE’s of 100 cm2 s�2 and higher are found more than 250 km
offshore, while the same measure of variability can be found as
close as 100 km offshore in the southern Benguela. The low EKE’s
at the coast for both the northern and southern regimes are of sim-
ilar magnitude (�5 cm2 s�2), thus resulting in offshore surface gra-
dients of 0.38 cm2 s�2 km�1 and 0.95 cm2 s�2 km�1, respectively.
Higher EKE’s extend deeper in the southern Benguela and are
potentially related to the barotropic nature of passing Agulhas
rings (which have been observed to extend to at least 1600 m
depth (Schmid et al., 2003) that abut against the shelf-break, some
200 km offshore, resulting in relatively high EKEs at the shelf-break
at depths of 500 m to at least 1000 m. While Agulhas rings are
deep-reaching features, they are surface intensified (e.g. see
Fig. 6.18 in Lutjeharms, 2006) and therefore result in the surface
enhancement of EKE in the southern Benguela.
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4. Conclusions

The different characteristics of the northern and southern
Benguela regimes and the very distinct nature of their divide pre-
sents a natural laboratory and provides the opportunity for a sys-
tematic comparative study of different eastern boundary
upwelling regimes within one system and within one simulation.
Depth-integrated, large-scale circulation patterns of the Benguela
system give a convincing impression of separate regimes. The pole-
ward flow of the northern regime meets the stronger, more mean-
dering equatorward flow of the southern regime in the vicinity of
Lüderitz where the dominant transport is offshore and upwelling
rates and fluxes are the highest and, for this reason, has long been
considered the division between the northern and southern Bengu-
ela upwelling regimes. Greatest seasonal variability in upwelling
intensities occur south of Lüderitz and particularly in the far south,
with greatest fluxes during summer. Although seasonal variations
decrease toward the north, upwelling intensifies somewhat during
winter. The Benguela system in general is unique in its juxtaposi-
tion of low variability on the shelf and very high variability further
offshore. Though both the northern and southern Benguela re-
gimes are rather unique in this regard, the offshore gradient in
EKE is far more intense in the south, reflecting the influence of fea-
tures associated with the termination of the Agulhas Current. Dif-
for comparative modeling studies. Prog. Oceanogr. (2009), doi:10.1016/
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Fig. 4. Model-derived annual mean eddy kinetic energy sections typical of: (a) the northern Benguela (at 22�S) and (b) the southern Benguela (at 32�S). Units in cm2 s�2. The
100 cm2 s�2 contour is shown in bold.
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ferences in the offshore EKE gradients of the two regimes are likely
to have different implications for cross-shore exchanges of water
properties in these regions.

Perhaps the most unique feature of the Benguela system is the
fact that its southern boundary is one of the only places in the world
that can be described as a meeting place of eastern and western
boundary current systems, resulting in the very high offshore gradi-
ents of variability in this region. As opposed to the advection of high
EKE in the offshore region of the Benguela via Agulhas rings and ed-
dies, the primary source of EKE in the other three major eastern
boundary systems (California, Peru and Canary) is associated with
upwelling centers (Capet et al., 2008). Marchesiello et al. (2003)
demonstrated that while the main source of EKE nearshore in the
California Current system was split between barotropic and baro-
clinic conversions, offshore it was dominated by baroclinic conver-
sions, thus suggesting that offshore EKE is not only a result of
advection of nearshore sources. In other ways, the Benguela system
exhibits similarities with other eastern boundary current systems.
For example, Sverdrup dynamics appear to drive the large-scale
flow regime of the California system (Marchesiello et al., 2003) as
well as the Peru system (Penven et al., 2005). Upwelling-favourable
winds are strongest during summer along the Californian coast and,
similar to the Benguela system, greatest seasonal variability occurs
poleward of �40�S (Marchesiello et al., 2003).

While research of the Benguela upwelling system goes far back,
the model simulation on which this work is based, provides the
first opportunity to study salient features of the system in a spa-
tially and temporally cohesive manner at a high enough resolution
to capture nearshore dynamics. It has allowed us to characterize
features definitive of the northern and southern regimes and to
investigate the extent to which they are regarded as distinctly sep-
arate systems. The northern and southern regions of the Benguela
provide an opportunity to compare two separate regimes within
one system and within one simulation. This discussion served to
highlight the separation of the Benguela into distinct regimes
Please cite this article in press as: Veitch, J., et al. The Benguela: A laboratory
j.pocean.2009.07.008
Eand is presently being extended into a more thorough analysis of
equilibrium dynamics of the contrasting regimes as well as intrin-
sic, mesoscale variability of the system in general.
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