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INTRODUCTION

Populations of small pelagic clupeoid fishes such as
anchovies and sardines, which inhabit coastal
upwelling systems, have undergone large fluctuations
in abundance over the last century (Lluch-Belda et al.
1989, 1992, Schwartzlose et al. 1999). Whereas most of
the observed rapid declines in abundance may be
associated with intensive fishing, evidence from
deposits of fish scales in sediments off several

upwelling areas (Shackleton 1987, Baumgartner et al.
1992) suggests that extreme fluctuations in population
sizes of these fishes occurred long before the emer-
gence of large-scale fishing. This points to environ-
mental or biotic factors being largely responsible for
such fluctuations. 

In the southern Benguela, the European anchovy
Engraulis encrasicolus (Linnaeus 1758), formerly
called E. capensis (Gilchrist 1913), and the sardine
Sardinops sagax (Jenys 1842) comprise more than 80%
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ABSTRACT: Recruitment success of anchovy Engraulis encrasicolus in the southern Benguela is
thought to depend largely on the passive transport of eggs and larvae from their warm-water spawn-
ing area, located in the southern part of their distribution range (Agulhas Bank), to their cold-water
nursery grounds located 500 km away on the west coast of South Africa. In order to test this hypoth-
esis, the output of a 3D hydrodynamic model was coupled to a particle-tracking model, allowing the
quantification of different factors such as the timing and precise location of spawning activity, the fre-
quency of spawning activity within a month, the level of aggregation of the spawning stock, and the
interannual variability of transport due to mesoscale processes. Results from the model indicate that
spawning season and area have a major effect on transport success. The most favourable period for
spawning was September to March, peaking in November, and the western Agulhas Bank was the
most favourable spawning area. A low success rate of passive transport to the core inshore nursery
area in the model suggests that additional processes such as swimming or advection are required for
larvae to reach this area. In general, there was good agreement between observed spawning patterns
and the optimal temporal and spatial strata, where particle transport was most successful, suggesting
that the spawning strategy of anchovy is mainly the result of an adaptation to the circulation patterns
in the region. Nonetheless, some discrepancies were observed between the success of transport and
actual spawning patterns, and temperature may also be an important factor to take into consideration
to fully explain how this originally temperate species is able to survive in an area of highly contrast-
ing temperatures.
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of the total purse-seine fishery catch (Barange et al.
1999). Catches during the 1950s and early 1960s were
dominated by adult sardine, peaking at ~400 000 t in
1961–62, but declined to <100 000 t by 1967 (Verheye
et al. 1998). This collapse was followed by a rapid
increase in catches of anchovy, which replaced sardine
as the dominant species during the 1970s and 1980s
(Crawford et al. 1987). In addition to these decadal-
scale fluctuations in abundance, direct acoustic esti-
mates of pelagic fish abundance since 1984 (Hampton
1987, 1992, Barange et al. 1999) have indicated consid-
erable annual variability in recruitment of both sardine
and anchovy, particularly the latter (Fig. 1). Estimated
variations in anchovy recruitment were 5-fold during
the period 1984 to 1999 and increased to nearly 20-fold
after 2 yr of exceptional recruitment in 2000 and 2001. 

Recruitment of pelagic fish is the net result of a con-
tinuous series of life-cycle events, but most of the vari-
ability in natural mortality is thought to occur during
the early stages of development and to relate to envi-
ronmental factors (Bakun 1996). However, recruitment
predictions made from empirical relationships
between environmental factors and abundance have
failed in many instances, in the Benguela as well as in
other regions (Myers 1998), emphasising the impor-
tance of understanding the underlying processes. A
number of theories addressing likely sources of egg
and larval mortality, and hence recruitment success,
have been developed over the previous century; these
have been comprehensively reviewed by Anderson
(1988) and Cole & McGlade (1998). It is now generally
recognised that no single factor or event is responsible
for determining year-class strength, and concepts that
integrate a number of processes influencing recruit-

ment are gaining prominence, such as the optimal
environmental window (OEW) theory of Cury & Roy
(1989) and Bakun’s (1996) triad hypothesis, which sug-
gests that enrichment, concentration, and retention are
important processes influencing the recruitment suc-
cess of coastal pelagic fishes. 

Previous attempts to forecast anchovy recruitment in
the southern Benguela have mainly followed 2 differ-
ent approaches: the establishment of empirical rela-
tionships between environmental or biological vari-
ables and recruitment strength (Boyd et al. 1998,
Richardson et al. 1998, Roy et al. 2001), and the devel-
opment of expert systems (Korrûbel et al. 1998, Paint-
ing & Korrûbel 1998, Painting et al. 1998). Some of the
environmental relationships were conflicting, and
none withstood the ‘test of time’, although the expert
system approach shows considerable promise. 

The unreliability of empirical relationships is not sur-
prising considering that different variables, or combi-
nations of variables, may determine recruitment suc-
cess from year to year (Hutchings et al. 1998). The
complexity of the ‘recruitment problem’ has led to an
increasing realisation of the need for new techniques
that are able to explore the complex ecological pro-
cesses affecting the recruitment of pelagic fishes. A
common way of representing the early life-history
stages is by considering eggs and larvae as passive
particles confronting environmental conditions pro-
vided by the output of hydrodynamic models. This
Lagrangian approach has also been used for zooplank-
ton (e.g. Miller et al. 1998) and fishes (e.g. Heath &
Gallego 1997). Adding biological properties to these
particles results in so-called individual-based models
(IBMs), which have recently emerged as a useful tool
for describing interactions between individuals dis-
playing different behaviours within a population, and
their environment. IBMs permit the spatial representa-
tion and integration of environmental, ecological and
biological data (De Angelis & Gross 1992, Tyler & Rose
1994, Letcher et al. 1996, Grimm 1999, Werner et al.
2001). 

The life history of anchovy in the southern Benguela
incorporates distinct spawning, transport and nursery
regions, and is summarised in Hutchings & Boyd (1992)
and Hutchings et al. (1998). Adult anchovy spawn seri-
ally during spring and summer (September to March)
on the Agulhas Bank (Fig. 2), mainly in the western
region, which contains the bulk of the spawner popu-
lation. Eggs and larvae are rapidly transported to the
west coast nursery area by frontal jet currents (typi-
cally 0.5 to 0.75 m s–1, Boyd et al. 1992), but losses of
spawning products are likely to result from offshore
transport via filaments, eddies, and Ekman transport,
which are known to be important in the region (Shan-
non et al. 1996, Hutchings et al. 1998). Successfully

2

Fig. 1. Numbers of anchovy and sardine recruits (billions) in
the southern Benguela estimated from annual winter
(May–June) acoustic pelagic recruitment surveys over the pe-
riod 1985 to 2002 (Hampton 1992, Barange et al. 1999, 

updated by J. Coetzee pers. comm.)
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transported larvae are thought to migrate across the
wide shelf to a nursery region close inshore along the
west coast. Here the juvenile fish form the basis of a
valuable reduction fishery during winter, before mov-
ing southwards towards the Agulhas Bank to spawn
at 1 yr of age.

Because the spawning and nursery areas are about
500 km apart, transport is likely to be a key factor in
the success of anchovy recruitment in the southern
Benguela. A simplified simulation model of egg and
larval transport by Shannon et al. (1996) showed that
fluctuations in passive transport (e.g. advective losses)
of young anchovy may account for a substantial pro-
portion of year-class variability. 

The aim of the present study is to use a particle-
tracking model to investigate the success of different
spatio-temporal spawning strategies on the Agulhas
Bank in relation to the passive transport of eggs and
larvae to the west coast nursery area. This model was
designed as part of a proper IBM, in order to allow test-
ing of other factors influencing recruitment success in
future investigations, using a step-by-step approach of
adding increasing complexity to the model once uncer-
tainties pertinent to the earlier developmental stages
have been resolved, such as vertical distribution and
buoyancy of the eggs, mortality and growth.

Four hypotheses relating to different spatio-temporal
scales of spawning are tested in the present study: that

(1) the area and/or month of spawning affects success-
ful transport from the spawning grounds to the nursery
region, (2) spawning patchiness within each area sig-
nificantly affects transport success, (3) spawning fre-
quency within each month significantly affects trans-
port success, and (4) the modelled current regime
facilitates passive transport of spawning products
directly into the core (inshore) nursery area, and not
only into the adjacent offshore region. Finally, the
model is used to improve our understanding of the par-
ticular adaptive reproductive strategy of anchovy in
the Benguela ecosystem by simulating alternative
strategies not observed in nature, such as spawning
during winter. 

METHODS

The hydrodynamic model. The particle-tracking
model uses the output of a 3D hydrodynamic model of
circulation in the southern Benguela, known as
PLUME (Penven et al. 2001a). The ocean model is the
regional ocean modelling system (ROMS; Haidvogel et
al. 2000). It solves the free surface, primitive equations
in an earth-centred rotating environment, based on the
Boussinesq approximation and hydrostatic vertical
momentum balance. ROMS is discretised in coastline-
and terrain-following curvilinear coordinates. A third-
order, upstream-biased advection scheme imple-
mented in ROMS allows the generation of steep gradi-
ents (Shchepetkin & McWilliams 1998), and explicit
lateral viscosity is null everywhere except near the
open boundaries. A non-local, K-profile planetary
(KPP) boundary layer scheme (Large et al. 1994) para-
meterises the unresolved physical vertical subgrid-
scale processes.

The PLUME grid is pie-shaped, curving around the
SW South African coastline from 28 to 40°S and from
10 to 24°E (Fig. 3). The horizontal resolution ranges
from 9 km at the coast to 16 km offshore. A lower reso-
lution grid (18 km at the coast) was used to test the sen-
sitivity of the model to horizontal resolution. Although
the low-resolution configuration is able to simulate the
main features of the regional circulation, the high-res-
olution grid is about 2 times finer than the first-baro-
clinic Rossby radius of deformation (ca. 20 to 30 km in
this area), and thus totally resolves the dominant scale
of the most unstable waves. Hence, our high-resolution
solution differs from the coarser one mainly by the
level of mesoscale activity that develops during the
simulation (Penven et al. 2001a). At this high resolu-
tion, the baroclinic time step was 1800 s and the
barotropic time step was 38 s.

Twenty vertical levels preserve a high resolution
near the surface. Since ROMS uses terrain-following

3

Fig. 2. Map showing the 5 Engraulis encrasicolus spawning
areas on the Agulhas Bank (indicated by dashed lines) and
the 2 nursery areas on the west coast as used in the model (in-
dicated by dotted lines), as well as locations mentioned in the
text: western Agulhas Bank (WAB), central Agulhas Bank
(CAB), and eastern Agulhas Bank (EAB). The arrow indicates
the approximate location of the shelf-edge jet current, the star
indicates the location of Cape Point, and the SARP monitoring
line is represented by the solid line to the NW of Cape Point
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curvilinear coordinates, the vertical resolution ranges
from 1 to 4.7 m at the surface and from 3.1 to 1030 m at
the bottom. The model is forced by winds, heat fluxes
and fresh water fluxes derived from the COADS ocean
surface monthly climatology at 0.5 degree resolution
(da Silva et al. 1994). At the 3 lateral boundaries facing
the open ocean, a specific scheme (Marchesiello et al.
2001) connects the model solution to cyclic seasonal,
time-averaged outputs of the ‘Agulhas as primitive
equations’ (AGAPE) basin scale ocean model (Biastoch
& Krauß 1999).

The summer values of the AGAPE climatology are
used for the initial conditions. The domain being rela-
tively small, the solution, starting from rest, quickly
adjusts to the initial stratification and the model
reaches a statistical equilibrium after a spin-up of
about 1 to 2 yr (Penven 2000). Since the dynamics in
this area are highly turbulent, one should expect to
find slight differences in the model solution from one
year to another, even if the forcing is identical each
year and the solution is already at equilibrium. 

The particle-tracking model. The model was
designed to simulate the Lagrangian transport of parti-
cles (anchovy eggs that subsequently develop into
anchovy larvae, although our model considers a single
category of particles) from the Agulhas Bank spawning
grounds to the west coast nursery area. The particle-
tracking algorithm, which is based on a Eulerian
scheme, was written by the authors. It samples the out-
put of the hydrodynamic model every 48 h but interpo-
lates the data at 5 time steps during each 48 h period.

This time step was selected after checking the sensitiv-
ity of the model to this interval. The algorithm does not
include any turbulent diffusion; visualisation of the rel-
ative displacement of the particles obtained with pas-
sive transport indicated that the currents were very
‘diffusive’ without explicit diffusion.

Fixed parameters. These included: (1) the release of
10 000 particles per run in order to ensure stability in
the outputs of the model despite the incorporation of
random factors, (2) a random vertical distribution of the
particles between the surface and 60 m based on our
limited knowledge of spawning depth, (3) a spawning
period of 1 mo repeated 12 times in order to investigate
transport success all year round, and (4) a tracking
period of 60 d. 

Transport success was defined as particles that were
passively transported to the nursery area within a time
interval of 14 to 60 d after release. The lower limit cor-
responds to the minimal swimming ability required to
avoid advection upon arrival in the low-current nurs-
ery area, whereas the upper limit corresponds to the
maximum swimming ability at which the fish may still
be considered as a passive particle in an area of strong
flow. These limits are based on our perception of
swimming capability from measured and estimated
stage-specific growth rates (King et al. 1978, Arm-
strong & Thomas 1989, Huggett et al. 1998), as well as
observed size in the inshore nursery grounds (Hutch-
ings et al. 1998, van der Lingen & Merkle 1999). The
nursery area was divided into 2 regions: the inshore
nursery, the 0 to 200 m shelf region between Cape
Columbine and the Orange River, which is considered
to be the core of the nursery area; and the offshore
nursery, the 200 to 500 m shelf region between Cape
Columbine and the Orange River (Fig. 2). 

Variable parameters. Particles were released from 5
different spawning areas (‘Area’ as the variable): (1) the
western Agulhas Bank (WAB) between Cape Point and
Cape Agulhas from 0 to 500 m depth, (2) the inshore
central Agulhas Bank (CAB in) between Cape Agulhas
and Mossel Bay, from 0 to 100 m depth, (3) the offshore
central Agulhas Bank (CAB off), as above, but from 100
to 500 m depth, (4) the inshore eastern Agulhas Bank
(EAB in) between Mossel Bay and Cape St Francis, from
0 to 100 m depth, and (5) the offshore eastern Agulhas
Bank (EAB off) as above, from 100 to 500 m depth. 

These areas cover the main spawning grounds of
anchovy and their boundaries are inspired by current
convention in the region. The 100 m depth contour is
used1 on the central and eastern Agulhas Bank to split

4

Fig. 3. Example of the PLUME model output, showing aver-
age sea surface temperature (SST; °C) and surface currents
(m s–1) for 1 of December during Year 4 of the model at a 

depth of 15 m

1Due to the smoothing of the bathymetry imposed by some
constraints in the PLUME model, we had to use the 125 m
depth contour in the hydrodynamic model in order to repre-
sent the 100 m depth contour accurately.
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these areas into low spawning-intensity coastal zones
and high spawning-intensity offshore zones (Fig. 4). 

Other variable parameters included month of parti-
cle release or ‘spawning event’ (‘Month’, varying from
January to December), the successive year of the sim-
ulation model (‘Year’, varying from 4 to 8), particle
patchiness (‘Patchiness’, discrete values of 1, 10 or 100
corresponding to 10 000 random releases of 1 particle
in the spawning area, 1 000 random releases of 10 par-
ticles in 1 km2 and 100 random releases of 100 particles
in 1 km2, respectively), and frequency of ‘spawning
event’ (‘Frequency’, discrete values of 1, 3 or 10 corre-
sponding to the release of particles every 1, 3 or 10 d
mo–1, respectively). Due to our limited knowledge of
the spawning behaviour of anchovy, Patchiness and
Frequency were incorporated in the model in order to
test the effect of non-randomness in the spatial and
temporal distribution of particle release. Three trials of
each permutation were run, resulting in 8100 simu-
lated spawning events and a total of over 24 million
particles released (Table 1).

Assumptions. A number of implicit and explicit
assumptions were made:

• the resolution, forcing, and topography employed
in the PLUME model produced sufficiently realistic
circulation patterns; short-term (<1 mo) wind
events did not significantly affect the transport of
spawning products from the spawning grounds to
the nursery area
• significant spawning (in terms of reproductive
success) only occurs on the Agulhas Bank, from
Cape Point to Cape St Francis between the coast
and the 500 m isobath

• the subdivision of the spawning
area into 5 sub-areas (Fig. 2) was
adequate to explore the influence of
spatial variability on reproductive
success
• the vertical distribution of eggs
released by fish was assumed to be
homogeneous in the upper 60 m,
and any departure from this
assumption would not significantly
affect transport success
• eggs and larvae are mainly trans-
ported in a Lagrangian mode and
the effects of ichthyoplankton den-
sity, diffusion and active movement
are negligible in comparison to this
fast mode of transport
• transport success was achieved
when particles reached the nursery
area within a time interval of 14 to
60 d after release
• the release of 10 000 particles in the

model during each run was sufficient to ensure sta-
bility in the outputs of the model (i.e. variability due to
random factors in the model was taken into account).

Sensitivity analysis and validation. A sensitivity
analysis of transport success as the dependent variable
was performed on the 5 independent class variables
(Table 1) using multifactor analysis of variance that we
will abbreviate as ANOVA in the rest of the text. We
used the ‘visual general linear model’ module of Stat-
Soft (2000), although there was no continuous inde-
pendent variable in our model. We first ran a full
crossed model with all possible interactions up to the
3rd degree (3-way interactions). A stepwise procedure
was then used to manually select a more parsimonious
‘suboptimal’ ANOVA. Because the number of data
points is high and the design is fully balanced, an opti-
mal ANOVA (including all the significant variables)
would be over-parameterised, and some parameter
estimates would be biased and/or not unique estima-
tors. As stressed by Lebreton et al. (1992), instead of
intending to obtain the ideal model explaining the
highest percentage of variance, it is preferable to allow
some secondary and hypothetical effects in the residu-
als and to focus on the main effects in the model. A
visual residual analysis was performed to check for
normality in the distribution of residuals, and to ensure
that there was no trend in the mean and variance of
residuals plotted against observed values. Results of
the ANOVA were interpreted in the context of
observed distributions of anchovy eggs during annual
surveys of spawner biomass on the Agulhas Bank, as
well as of seasonal spawning patterns from the litera-
ture and ongoing monitoring programmes.

5

Fig. 4. Engraulis encrasicolus. Composite distribution map of anchovy eggs (no.
m–2) collected with a CalVET net during annual (November) pelagic spawner
biomass surveys over the period 1983 to 1999 (C. van der Lingen pers. comm.)
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The model output was compared to monthly patterns
of anchovy egg abundance from 2 historical ichthy-
oplankton surveys, namely the ‘early routine’ surveys
and the cape egg and larval programme (CELP) sur-
vey, plus 1 monitoring line, the sardine and anchovy
recruitment programme (SARP) line. Both surveys
were conducted off the SW coast of South Africa
between Lamberts Bay and Cape Infanta (Fig. 2). Dur-
ing the ‘early routine’ surveys from 1965 to 1967,
anchovy eggs were collected using a N100H/70 net
(0.78 m2 mouth area, 220 µm mesh) towed horizontally
just below the surface for 5 min (Crawford 1981). Dur-
ing the CELP survey from 1977 to 1978, anchovy eggs
were collected using double oblique hauls of a Bongo
sampler (0.25 m2 mouth area, 300 µm mesh) to a maxi-
mum depth of 100 m (Shelton 1986). The SARP moni-

toring line (1995 to 2001) comprised regular sampling
along a 40 mile transect crossing the Benguela jet cur-
rent off the Cape Peninsula (Fig. 2). Monitoring along
this transect was initiated in August 1995, with sam-
ples collected twice per month on average from sta-
tions located at 3-mile intervals along the transect.
Ichthyoplankton samples were collected with a mini-
Bongo net sampler (0.025 m2 mouth area, 300 µm
mesh) lowered to 70 m while the vessel was stationary,
and then towed obliquely through the water to the sur-
face at 1 to 2 m s–1 (Huggett et al. 1998). As the meth-
ods varied in all of these surveys, monthly egg abun-
dance was expressed as a percentage of total annual
abundance.

RESULTS

Success of transport to the 2 nursery regions for all
parameters investigated is shown in Table 1. It is
expressed as the ratio of successful particles arriving in
the nursery area to the number of particles released in
a given area. Transport success was relatively high for
the offshore nursery region, attaining 10%. In contrast,
there was a low overall success rate (2%) of particles
passively transported to the inshore nursery region
and this success was almost exclusively due to parti-
cles released in the WAB, where transport success was
10% compared to <1.5% in any of the other areas.
Because so few particles released in the latter areas
reached the inshore nursery, in the rest of the paper we
will concentrate on transport success to the offshore
nursery region and only briefly mention transport suc-
cess to the inshore nursery for the WAB area. 

The results of the full crossed ANOVA for the simula-
tion on the offshore nursery region are shown in Table 2.
Area, Month and Year were significant, with Area
explaining most of the variance (41%). Month and Year
explained 24 and 2% of the variance, respectively.
Neither Patchiness nor Frequency had a significant
effect on transport success, and explained less than
0.001% of the variance. The most significant interactions
were between Area and Month (17.3% of the variance),
Year, Area and Month (7.3%) and Year and Month
(5.9%). The variables incorporated in the ANOVA
explained 94% of the variance, with 6% of the variance
attributable to error (randomness in the distribution of
the particles). The suboptimal ANOVA (retained factors
shown in bold in Table 2) explained 92% of the total
variance and the contribution of each factor was very
similar (not shown). The residual analysis performed on
both models (full cross and suboptimal) indicated
normality in the distribution of residuals and no trend in
the mean and variance of residuals when plotted against
observed values (results not shown).
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Table 1. Number of particles released in the individual-based
model (IBM) and number and percentage of particles
successfully transported to the 2 nursery regions, for each
parameter. WAB: western Agulhas Bank; CAB: central
Agulhas Bank: EAB: eastern Agulhas Bank; ‘in’ and ‘off’ after 

abbreviation means ‘inshore’ and ‘offshore’, respectively

Parameter No. particles % successfully
released transported to

inshore offshore
nursery nursery

Month
January 2025000 1.25 14.96
February 2025000 1.09 12.4
March 2025000 1.39 9.03
April 2025000 1.86 5.11
May 2025000 1.57 2.71
June 2025000 1.23 1.88
July 2025000 1.56 2.76
August 2025000 3.15 6.95
September 2025000 3.67 12.49
October 2025000 2.84 15.51
November 2025000 1.75 17.79
December 2025000 1.44 17.78
Area
WAB 2977100 10.01 33.79
CAB in 7766485 1.16 9.92
CAB off 5447995 1.27 8.66
EAB in 2157478 0.13 3.84
EAB off 5950942 0.03 1.49
Year
4 4860000 1.25 8.07
5 4860000 2.05 8.66
6 4860000 1.56 9.65
7 4860000 2.71 13.00
8 4860000 1.93 10.40
Patchiness
1 8100000 1.91 9.95
10 8100000 1.88 9.92
100 8100000 1.91 10.00
Frequency
1 8100000 1.92 10.01
3 8100000 1.87 9.92
10 8100000 1.91 9.94
Total 24300000 1.90 9.96
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Transport success of particles to the nursery area dis-
played considerable variability in relation to both spa-
tial and temporal release patterns. The WAB was the
best area for spawning in terms of successful transport
of particles to both the inshore and offshore nursery
regions (Fig. 5), followed by the inshore CAB, the off-
shore CAB and lastly the 2 EAB areas. Temporally,
overall transport success to the offshore nursery region

was highest for particles released between September
and March, gradually declining to lowest levels in the
winter months of June and July (Fig. 6). In contrast,
transport success from the WAB to the inshore nursery
showed a different pattern, with a narrower peak in
August–September (results not shown).

The ANOVA revealed a substantial interaction
between the timing and location of particle release on

7

Table 2. Results of a 3-way interaction ANOVA performed on successful transport of particles to the offshore nursery region

Factor % variance SS df MS F p
explained

Year 2.1 21573755 4 5393439 608.3 ***
Area 41.2 414463492 4 103615873 11686.0 ***
Month 23.9 240207065 11 21837006 2462.8 ***
Patchiness 0.0 8709 2 4354 0.5
Frequency 0.0 11921 2 5961 0.7
Year × Area 0.8 8357749 16 522359 58.9 ***
Year × Month 5.9 59702055 44 1356865 153.0 ***
Area × Month 17.3 174256407 44 3960373 446.7 ***
Year × Patchiness 0.0 70796 8 8849 1.0
Area × Patchiness 0.0 55763 8 6970 0.8
Month × Patchiness 0.0 100934 22 4588 0.5
Year × Frequency 0.0 74666 8 9333 1.1
Area × Frequency 0.0 157182 8 19648 2.2 *
Month × Frequency 0.3 26887272 22 122217 13.8 ***
Patchiness × Frequency 0.0 4219 4 1055 0.1
Year × Area × Month 7.3 73065708 176 415146 46.8 ***
Year × Area × Patchiness 0.0 186787 32 5837 0.7
Year × Month × Patchiness 0.0 448310 88 5094 0.6
Area × Month × Patchiness 0.1 652382 88 7413 0.8
Year × Area × Frequency 0.0 272020 32 8501 1.0
Year × Month × Frequency 0.3 3163567 88 35950 4.1 ***
Area × Month × Frequency 0.5 5523506 88 62767 7.1 ***
Year × Patchiness × Frequency 0.0 997800 16 6238 0.7
Area × Patchiness × Month 0.0 186956 16 11685 1.3
Month × Patchiness × Frequency 0.0 388085 44 8820 1.0
Model 94.0 1005720606 875
Error 6.0 64052903 7224 8867

Fig. 5. Engraulis encrasicolus. Transport success (%) to the
offshore nursery area in relation to spawning area (Area as 

variable)

Fig. 6. Engraulis encrasicolus. Transport success (%) to the
offshore nursery area in relation to month of spawning 

(Month as variable)
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the success of transport to the offshore nursery region
(Fig. 7), with different patterns of variation for the
WAB and the offshore CAB compared to other areas.
The WAB and offshore CAB showed a protracted suc-
cessful season of 9 mo, with relatively low values only
from May to July, while in the other areas successful
transport was observed during 7 CAB in to 5 mo (EAB
areas). Nonetheless, a feature common to all areas was
relatively high transport success from November to
February. 

There was some ‘interannual’ variability in transport
success (Fig. 8), with lowest virtual transport in Year 4
of the model (8%) and highest in Year 7 (13%, Table
2). There was a significant but moderate interaction

between Year and Month, and despite
some slight variation from year to year,
the general seasonal pattern described
in Fig. 6 was observed during all years. 

DISCUSSION

Spatial and temporal spawning
patterns

The large contribution of month and
area of particle release, as well as the in-
teraction between these variables, to
successful transport in the model
supports our first hypothesis. From a
strictly spatial point of view, the highest
transport success associated with parti-
cle release on the WAB in the simulation
model agrees well with the observed oc-
currence of most anchovy eggs on the
WAB during the acoustic pelagic bio-
mass surveys conducted during Novem-

ber each year (Fig. 4), and supports the view that the
WAB is the most important spawning area for recruit-
ment to the west coast because it is the most favourable
region for transport of eggs and larvae to the west coast
nursery area (Peterson et al. 1992, Cochrane & Hutch-
ings 1995, Mullon et al. 2002). Whereas most anchovy
eggs have historically been found on the WAB, eggs are
also often concentrated on the offshore CAB near the
shelf edge, the third most successful area for spawning in
terms of the simulation model. It may thus seem surpris-
ing that the model indicated that the inshore CAB
yielded slightly more successful transport than the off-
shore CAB, but of course processes other than transport
are involved in the selection of spawning habitat, and
they are not taken into account in this model. The band
of anchovy eggs on the offshore CAB (Fig. 4) is sand-
wiched between a quasi-permanent ridge of subsurface
cool water which extends south-westwards from the
EAB to the CAB (Swart & Largier 1987, Boyd & Shilling-
ton 1994) and the fast-flowing Agulhas Current. As 16 to
19°C water is optimal for anchovy egg development
(Richardson et al. 1998), the shallow thermocline and
cool (<14°C) water associated with the ridge may pre-
clude extensive spawning in this region (Hutchings
1994), which incorporates much of the inshore CAB. 

The least successful areas, in terms of transport to the
west coast nursery region, were the 2 EAB areas, where
eggs were found in low to moderate densities during the
November surveys (Fig. 4). The discrepancy between
the very low transport success from the offshore EAB
and the moderate spawning activity that occurs in this
area is largely due to our criteria of maximum age at the

8

Fig. 7. Engraulis encrasicolus. Transport success (%) to the offshore nursery area
in relation to spawning area (Area as variable) and month of spawning (Month 

as variable)

Fig. 8. Engraulis encrasicolus. Transport success (%) to the
offshore nursery area in relation to the year of the PLUME

model (Year as variable)
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end of the transport phase (60 d). Particles released from
the offshore EAB began arriving in the offshore nursery
area 28 d after their release, and were still transported to
the distant nursery ground at 60 d, and certainly there-
after (Fig. 9). Indeed, despite their low catchability, sig-
nificant numbers of large and presumably older larvae
are caught along the SARP line long after the decline in
egg abundance (Authors’ unpubl. data). At this ad-
vanced stage of development, however, the swimming
capabilities of the larvae certainly play a major role in
the real world. Whether pre-recruits older than 2 mo re-
main on the spawning grounds or migrate to the nursery
area is still unknown. 

From a strictly temporal point of view, the model indi-
cates that September to March is the best time of year for
anchovy to spawn to ensure transport of eggs and larvae
to the nursery grounds, while May to July is the worst
time of year. Anchovy spawning may extend from Au-
gust to April, but most spawning occurs between Octo-
ber and January/February (Crawford 1981, Shelton &
Hutchings 1990, Fowler 1998, Huggett et al. 1998). Arm-
strong & Thomas (1989) observed that this period repre-
sents a window of time in which the oceanographic con-
ditions on the Agulhas Bank are most suitable for
successful spawning by anchovy. Spawning also coin-
cides with a period of surface water drift from the Agul-
has Bank around Cape Point and northwards, facilitating
transport of eggs and larvae to the west coast. Numerous
surveys during summer have revealed a tongue of eggs
extending from the WAB up the west coast, indicating
the effects of the frontal jet-current on transport (Shelton
& Hutchings 1990, Roel et al. 1994). The seasonality of

egg abundance constructed from data collected during
early surveys, the CELP survey and along the SARP
monitoring line (Fig. 10) confirms that the main spawn-
ing activity occurs from September to March/April, al-
though the spawning peaks are sharper in the SARP and
‘early routine’ survey data than in the transport success
simulation for particles reaching the offshore nursery
area. 

The spatio-temporal effect, as illustrated by the sub-
stantial interaction between Area and Month, is more
difficult to interpret because most of the acoustic sur-
vey data are obtained in November, and we have little
information on spatial spawning patterns during the
rest of the year. For instance, in our model, transport
from the WAB to both inshore and offshore nursery
regions peaks in September, but there is no evidence
of more spawning activity in September in this region
than later during the spawning season. Monthly egg
and larval surveys during 2 consecutive spring/sum-
mer upwelling seasons indicated greatest egg abun-
dance during October and November on the WAB,
with relatively low egg abundance during September
(Painting et al. 1998). 

The moderate interannual variability in transport
success can only be attributed to varying mesoscale
processes, which result from intrinsic instabilities of
the ocean dynamics incorporated into the hydrody-
namic model, despite the smoothed and repeated pat-
tern of seasonal forcing conditions (Penven 2000, Pen-
ven et al. 2001a). 

Neither spawning frequency nor spawning patchi-
ness contributed significantly to transport success (2nd

9

Fig. 9. Engraulis encrasicolus. Non-cumulative transport suc-
cess (%) to the offshore nursery region according to the age of
the particles released from different spawning areas (see Fig. 2
for their location and full names; ‘in’ and ‘off’ after abbreviation 

means ‘inshore’ and ‘offshore’, respectively)

Fig. 10. Engraulis encrasicolus. Relative monthly abundance
(%) of anchovy eggs collected during various surveys off the
southwest coast, as well as modelled transport success (%) to
the offshore nursery area for particles released during different
months on the Agulhas Bank. CELP: Cape egg and larval pro-
gramme; SARP: sardine and anchovy recruitment programme

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116



Mar Ecol Prog Ser ■ ■

and 3rd hypotheses therefore rejected). Therefore, in
the following steps of our model, we will not have to
incorporate these factors and will thus limit the risk of
over-parameterisation of the model.

Passive transport to the nursery region

The overall success rate of transport to the core
coastal area of recruitment (inshore nursery) is low in
the model (2%). Although the high individual lifetime

fecundity of anchovy (about 100 000 eggs per female;
Armstrong et al. 1988, Melo 1994, Motos 1996) implies
that a survival rate as low as 0.002% is theoretically
sufficient to maintain the equilibrium of the popula-
tion, a number of other sources of natural mortality
besides offshore advection have been identified, such
as predation, starvation, and lethal temperature
(Hutchings & Boyd 1992, Hutchings et al. 1998). More-
over, short-lived pelagic species like anchovy have to
deal with extreme environmental changes, and some
authors argue that their high fecundity is part of an

10

a) b)

Fig. 11. Engraulis encrasicolus. Small-scale maps of transport success (%) to the whole nursery area (inshore and offshore nurs-
ery combined) according to the area and depth of release of the particles. (a) Southern area only, (b) whole model domain. The
first column corresponds to particles released at a depth interval of 0 to 33 m, the second column to a depth release interval of 34
to 66 m and the third column to a depth release interval of 67 to 100 m. Each row corresponds to bimesters from January/

February (top) to November/December (bottom)
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opportunistic strategy to colonise or re-colonise remote
areas (reviewed in Bakun 1996). All these reasons sug-
gest that additional processes are required for larvae to
reach the inshore nursery region (fourth hypothesis
therefore rejected). Indeed, a positive offshore-inshore
gradient in the length of larvae has been observed,
with larvae <20 mm located offshore and those
>35 mm located inshore (van der Lingen & Merkle
1999), suggesting a slow offshore-inshore migration,
either passive or active. 

The simplest solution for ensuring the successful
arrival in the nursery area of larvae transported off-
shore is that those larvae swim towards the coast as
soon as they are able to. Recent studies on the return
migration of coral reef fish species advected far away
from reefs indicate that in Acanthurid species, such
young post-larvae have astonishing swimming capa-
bilities even when starving in oligotrophic areas. They
are able to swim continuously for several days at aver-
age speeds up to 0.13 m s–1, covering the equivalent of
194 km (Stobutzki 1998).

An alternative, but not mutually exclusive, hypothe-
sis is that the larvae are carried or advected inshore by
currents. This could occur through 2 different pro-
cesses. Larvae could either migrate vertically to the
depth of the upwelling Ekman inshore compensatory
flow (below 50 m), although there is no data to support
this theory, or else they could remain in the upper layer
and benefit from transport during relaxation of the
upwelling favourable winds (Armstrong & Thomas
1989). At present our hydrodynamic model is forced by
a monthly climatology, and does not allow us to
explore this scenario of high frequency wind relax-
ation. 

Assumptions in the model

Certain implicit or explicit assumptions presented
earlier can now be addressed; others are still under
investigation or are not presently testable. Validation
of the PLUME model was largely achieved. The simu-
lated surface currents, averaged from Year 2 to
Year 10, compare remarkably well visually with the
existing current measurements in the southern
Benguela (Penven 2000). The variance of sea surface
height, the level of surface kinetic energy and the
mean sea surface temperature also compare well with
satellite measurements (Penven 2000, Penven et al.
2001a). The only major discrepancy was too low tem-
peratures on the west coast, which was attributed to
the coarse spatial and temporal resolution of the
COADS wind product used to force the model. The
model is also able to reproduce typical processes asso-
ciated with the Agulhas Current such as the genera-

tion of cyclonic eddies from the southern tip of the
Agulhas Bank (Penven et al. 2001b) and the generation
of shear edge eddies (Lutjeharms et al. in revision).
These results give us confidence in the reliability of the
model outputs to reproduce a typical oceanic state for
the southern Benguela.

The location of the major spawning grounds
(restricted to the Agulhas Bank) is supported by
numerous surveys (Hampton 1987, 1992, Barange et al.
1999). The subdivision of the spawning grounds into
the 5 sub-areas shown in Fig. 2, inspired by current
practice in the region, could be debated, however. We
tested the suitability of this subdivision by displaying
probability maps of transport success at a much
smaller scale. We repeated the experiments with
spawning areas as small as 3 cells of the PLUME mod-
els (13 × 30 km on average) and used a colour chart to
map the results of successful transport to the whole
nursery area (Fig. 11a). From this figure, it appears that
the spatial variability of transport success within our
pre-defined areas is not very substantial, except for the
WAB throughout the year. High success rates were
observed beyond the continental shelf, especially dur-
ing winter outside the WAB, an area where, according
to many acoustic surveys, anchovy are seldom
observed (Hampton 1992, Barange et al. 1999). How-
ever, a number of anchovy eggs have been observed in
this area (Fig. 4), clearly transported there from adja-
cent shelf regions. 

Further north along the west coast, the success rate
is even higher (Fig. 11b), despite the fact that spawn-
ing is not frequently observed in this region (Hampton
1992, Barange et al. 1999). We interpret this as an
adaptive strategy of this species originating from the
temperate northern hemisphere. It is now accepted
(Whitehead 1990) that the anchovy species formerly
named Engraulis capensis (Gilchrist 1913) and consid-
ered to be endemic, is in fact the same species as the
European anchovy E. encrasicolus (Linnaeus 1758).
This is thought to result from a recolonisation of the
area by E. encrasicolus within the last few 10s or
1000s of years after a previous Southern African pop-
ulation had become extinct (Grant & Bowen 1998). In
fish, thermal tolerance of eggs is lower than that of
larvae, which in turn is much lower than that of adult
fish (Hempel 1979, Bunn et al. 2000). E. encrasicolus
managed to colonise the cold upwelling area off the
west coast (annual average temperature ranging from
14 to 16°C on the continental shelf [Shillington &
Nykjaer 2002], but frequently dropping below 12°C),
despite relatively high lower thermal tolerance limits
of ~12 and 14°C for eggs and larvae, respectively
(King et al. 1978). This was achieved by spawning in
the warm water of the Agulhas Bank, which firstly
allows early development within the thermal con-
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straints of this species, and secondly provides trans-
port to the cold-water nursery ground of more ther-
mally tolerant stages.

There are only 2 local studies depicting the vertical
distribution of anchovy eggs (Shelton & Hutchings
1982, 1990); these indicate that eggs are mainly dis-
tributed between the surface and 60 m. A random dis-
tribution of particles was selected above any mathe-
matical function because the location of the maximum
egg density varied between near-surface and approxi-
mately 40 m, and was even bimodal on 1 occasion.
However, there is a need for more discrete vertical
sampling in this regard. The maps showing differences
in transport success according to depth indicate that
the upper layer (0 to 33 m) on the Agulhas Bank is
more favourable than the intermediate layer (34 to
66 m), while the deeper layer (67 to 90 m) is generally
unfavourable except for the western limit of the WAB
and in the region farther offshore where the sea floor is
deeper than 500 m (Fig. 11a). In contrast, transport suc-
cess on the west coast is most successful for particles
released in the deeper layer (Fig. 11b).

In addition to the Lagrangian transport of particles that
we considered in this model, other processes can explain
the variability in the distribution of ichthyoplankton,
such as the density differential between the particles and
the seawater, diffusion processes and directional swim-
ming. Anchovy egg density is very close to seawater
density, varying from 1.021 to 1.027 g cm–3 (C. van der
Lingen pers. comm.). An ongoing study on the effect of
particle density on transport success indicates that this
factor is highly significant in the IBM model, even if egg
density alone is taken into account during the first 6 d of
the simulation (contribution to the total variance is
17.5%, C. Parada & C. van der Lingen pers. comm.).
Diffusion is not incorporated in our model at this stage.
Diffusion would be expected to increase the dispersion
of the particles and possibly increase the variance in our
results (Cowen et al. 2000). Nonetheless, it should not
dramatically change the relative transport success
according to the other factors incorporated in the model.
Directional swimming and diel vertical migration are by
far the most likely factors to change our results dramat-
ically, but we did not incorporate them in the model,
firstly because we wished to concentrate only on passive
transport during this first step of the simulation, and
secondly because we do not yet know the swimming
capability and orientation of the larvae. 

The number of particles released in the model
(10 000) during each run was sufficient to ensure sta-
bility in the outputs of the IBM model, since only 6 and
8% of the variance was not explained by the 3-way
interaction ANOVA (Table 2) and the suboptimal
ANOVA (not shown), respectively. This result was sta-
ble for all trials, which was not the case when only

5 000 particles were used during preliminary runs of
the model.

By far the most debatable assumption in our model is
that transport success is achieved when larvae reach the
nursery area within a time interval of 14 to 60 d after
release. This assumption is based on the average devel-
opmental stage observed on the nursery grounds and on
estimated growth rates that remain uncertain due to the
paucity of daily-ageing studies in the region. The upper
limit of 60 d corresponds to the mean estimated time to
reach metamorphosis, when larvae are 30 to 35 mm long
(Armstrong & Thomas 1989). Since larval swimming
capabilities are already well developed before reaching
this stage, this value is rather conservative. The model
suggests that many larvae remain on the Agulhas Bank
when older than 2 mo, and whether or not these larvae
die, survive and remain on the spawning grounds, or
move actively or passively to the nursery area, is largely
unknown. It has been speculated that eggs spawned on
the central and eastern Bank may recruit locally (Roel et
al. 1994), but recruits have seldom been observed east of
Cape Point during winter, including 2 surveys extending
to Port Elizabeth (Barange et al. 1999). A small popula-
tion of anchovy is known to exist on the east coast (~4%
of the total biomass east of Cape Point measured during
a survey in August 1986; Armstrong et al. 1991).
However, widespread distribution of anchovy eggs
(Anders 1975) and larvae (Beckley & Hewitson 1994) on
the east coast between Port Elizabeth and Durban
during several surveys suggests local recruitment to this
eastern population. 

Future research directions after consideration of the
results

The results obtained to date provide an incentive to
conduct new modelling and laboratory experiments, as
well as to collect field data with specific objectives in
mind. Future modelling and research objectives
should include: (1) IBM modelling experiments to test
the effect of other factors (temperature, egg density,
feeding, predation, etc.) on the survival of eggs and
larvae according to different spawning strategies (in
progress), (2) hydrodynamic modelling experiments to
test inshore-offshore transport in relation to upwelling
relaxation (in progress), (3) investigations of spawner
distribution during the early and late phases of the
spawning season, (4) surveys to locate pre-recruits
older than 2 mo remaining on the Agulhas Bank after
the spawning season, (5) multi-layer sampling of lar-
vae to determine their depth distribution at different
times of the day, and (6) laboratory experiments to
investigate diel vertical migration and swimming
capability of post-larvae.
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CONCLUSIONS

The coupling of a 3D hydrodynamic model to a par-
ticle-tracking model has proved to be a powerful tool
to investigate factors contributing to the transport suc-
cess of anchovy eggs and larvae in a highly dynamic
environment. In order to avoid some of the pitfalls in
IBM modelling identified by Grimm (1999), we clearly
identified our hypotheses and assumptions, tested
some of the assumptions as far as possible, and made
use of conventional statistical analyses routinely used
for laboratory and field experiments. This approach
improves the hypothesis validation process of model-
ling studies.

The model-derived temporal and spatial patterns of
transport success match our knowledge of the spawn-
ing habits of anchovy to a large degree. This suggests
that the passive transport of early stages plays a major
role in shaping the reproductive strategy of this spe-
cies. In addition to passive transport by currents result-
ing from a monthly climatology of forcing factors, it is
likely that a passive or active offshore-inshore process
occurs once the larvae reach the west coast area.

Discrepancies between the model output and
observed spatio-temporal spawning patterns may be
attributable either to additional (untested) constraints
during the life cycle, such as food availability, predator
avoidance and optimal temperature, or to an inaccu-
rate representation of the hydrodynamic processes by
the 3D model, or finally to incomplete knowledge of
the real spatio-temporal distribution of spawning. This
last point can be investigated by dedicated surveys
concentrating on limited space and time strata, which
would provide the beginning of a feedback loop
between modelling output and field data. 

The modelling tools used in this study have been
designed with transportability to other areas in mind,
where similar requirements for investigation may
appear. Understanding the key processes responsible
for recruitment success in relation to the spawning
strategy of the species is the first step towards predict-
ing fish-stock abundance fluctuations. In turn, predict-
ing abundance is a major issue for scientists who wish
to consider their own role in the decision-making pro-
cess, as advocated by Clark et al. (2001).
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