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A full two-way nesting approach for split-explicit, free surface ocean models is presented. It is novel in
three main respects: the treatment of grid refinement at the fast mode (barotropic) level; the use of scale
selective update schemes; the conservation of both volume and tracer contents via refluxing. An idealized
application to vortex propagation on a b plane shows agreement between nested and high resolution
solutions. A realistic application to the California Current System then confirm these results in a complex
configuration. The selected algorithm is now part of ROMS_AGRIF. It is fully consistent with ROMS par-
allel capabilities on both shared and distributed memory architectures. The nesting implementation
authorizes several nesting levels and several grids at any particular level. This operational capability,
combined with the inner qualities of our two-way nesting algorithm and generally high-order accuracy
of ROMS numerics, allow for realistic simulation of coastal and ocean dynamics at multiple, interacting
scales.
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1. Introduction

Despite a tremendous increase in available computing power,
the computational cost of numerical ocean models remains chal-
lenging, especially as submesoscale dynamics are now being inves-
tigated. The use of high spatial and temporal resolutions reduces
local truncation errors of discrete numerical schemes and allows
for a better representation of small dynamical scales and topo-
graphic features. Mesh refinement allows access to higher resolu-
tion in areas of interest at a limited computational cost. This
paper focuses on improvement to existing mesh refinement meth-
ods for structured meshes.

The unstructured grid approach provides a natural solution for
mesh refinement owing to its straightforward refinement process,
assuming that an efficient meshing tool is available. A new devel-
opment phase of unstructured grid models has emerged in recent
years with several improvements regarding long-standing issues:
preservation of geostrophic balance (Maddison et al., 2011); and
local/global conservation properties (Hanert et al., 2004; Levin
et al., 2006). The reader is referred to Ham et al. (2009), Deleersnij-
der et al. (2010), and Sidorenko et al. (2011) for an overview of re-
cent achievements. However, the additional numerical cost of
unstructured grid modeling and the ratio of computational cost
ll rights reserved.
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over accuracy remains to be objectively evaluated and compared
to the traditional structured grid approach. In addition, an impor-
tant challenge for unstructured mesh models is the implementa-
tion of local time-stepping algorithms with better numerical
properties. To our knowledge, no real progress on this issue has
been reported, at least regarding ocean modeling. We expect that
our treatment of time refinement in the present study will be prof-
itable to both structured and unstructured grid methods.

Nesting (or embedding) techniques for structured meshes gen-
erally consists of a local high resolution grid (HR or child grid)
embedded in a coarse resolution grid (CR or parent grid) that pro-
vides the boundary conditions. If this is the only transfer of infor-
mation between the two grids, the model is said to be in one-way
interaction. If there is also a transfer of information from the child
back to the parent grid (update), the model is in two-way interac-
tion. The development of two-way methods have been favored by
ocean modelers as they present, in principle, a more continuous
interfacial behavior. The various two-way interaction schemes
mainly differ by the type of interpolation, location of dynamical
interface (the grid points where update is set to occur), conserva-
tion properties and type of update (full update or weaker interac-
tion). A recent review of two-way embedding algorithms can be
found in Debreu and Blayo (2008), along with recent applications
focusing on upscaling impact (Biastoch et al., 2008); fine-scale
dynamics (Marchesiello et al., 2011); and topographic refinement
(Sannino et al., 2009). The definition of grid refinement in the
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Fig. 1. Local refinement. X is the domain covered by the coarse resolution grid
while x is covered by the high resolution grid. C is the boundary of the high
resolution domain x.
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embedding approach generally requires coarse and fine grids to
fully overlap. In case of complex geometry (i.e., with rivers and
estuaries), this can be a drawback since the coarse grid domain
may have to be unnecessarily large. In this case, a more powerful
alternative is the composite grid formulation where grids only
overlap in connecting areas (Warner et al., 2010). This formulation
is not explicitly addressed here but our treatment of mesh refine-
ment is relevant to both embedded and composite grid methods.

In this paper, we present and evaluate a set of choices made in
an implementation of two-way nesting methods allowing simulta-
neous spatial and temporal refinement in a split-explicit, free sur-
face ocean model. In split-explicit time-stepping, fast barotropic
quantities are integrated forward in time at a smaller time step
than required by the 3D equations. One important question is:
how can parent and child grids be coupled at the barotropic level?
To our knowledge, this question has not been raised in the litera-
ture; reported methods propose that coupling be done at the baro-
clinic level or that time refinement be avoided altogether (which
considerably simplifies the problem). This point is discussed in
Section 2.2 after a brief reminder of grid nesting basics (Section
2.1). Section 2.3 focuses on update schemes. In the past, interpola-
tion schemes have received much more attention than update
schemes, which often consist of a simple area-weighted average
operator chosen for its conservation properties. Here, we propose
a scale selective approach to construct the update operator. The re-
spect of conservation properties is another important issue for long
term integration. Here, conservation is achieved by flux correction,
a classic approach in adaptive mesh refinement for structured grids
(Berger and Oliger, 1984; Berger and Colella, 1989). This is pre-
sented in Section 2.4 along with its impact on stability and error
properties of the resulting scheme. The different methods are eval-
uated in the idealized case of a baroclinic vortex propagating on a b
plane (Section 3). A realistic application to the California Current
System is also presented; its results are discussed in light of theo-
retical arguments and idealized experiments.

2. Two-way nesting algorithms

2.1. General algorithm

For a general review of two-way nesting algorithms, the reader
is referred to Debreu and Blayo (2008). Here, the basic algorithm is
briefly described while improvements for various parts of the
problem are proposed in the following sections. For simplicity,
we consider a single child grid covering a subdomain x of the par-
ent domain X, as illustrated in Fig. 1. The boundary of the child grid
is delimited by the interface C.

The coarse resolution grid has a mesh size given by DxH, while
the fine resolution grid has a mesh size Dxh = D xH/q where q is the
spatial mesh refinement ratio (an integer). The partial differential
equations solved by the model are written in the following form:

@q
@t
¼ LðqÞ

along with an initial condition and lateral boundary conditions at
the limits of X. These equations are discretized on the coarse and
fine grid domains by:

@qH

@t
¼ LHðqHÞ;

@qh

@t
¼ LhðqhÞ ð1Þ

Thus LH and Lh are discretizations of the same continuous operator L
at different resolutions.1 The child grid needs lateral boundary con-
1 Note that, in principle, a different choice of numerical schemes and parameter-
izations may be adopted in the refined grid. However, this would complicate the issue
of interface continuity already posed by grid refinement itself.
ditions at the interface C and, in two-way mode, the coarse solution
is updated using the fine solution. This is modeled by two different
operators: an interpolator (P) and a restriction operator (R). In prac-
tice, adequate choices of P and R depend on the operator L and the
numerical schemes used for its discretizations LH and Lh. One useful
constraint is that these choices do not affect the model solution if the
refinement coefficient is 1 (i.e., in this special case: Lh = LH and qH

takes exactly the same values whether nesting is used or not). This
constraint ensures consistency of methodology; we thus checked
that it is satisfied in all developments presented in the following,
i.e., barotropic/baroclinic coupling Section 2.2, conservation Section
2.4, sponge layers Section 2.5.

Assuming that the model is fully explicit, the algorithm can be
written in the following simplified form:

1. qnþ1
H ¼ LH qn

H

� �
2. For m = 1 . . .qt do
q
nþm

qt
h ¼ Lh q

nþðm�1Þ
qt

h

� �

q
nþm

qt
h jC

¼ P qn
H; q

nþ1
H

� �

3. qnþ1

H jx
¼ R qnþ1

h

� �
Here, qt is the time refinement factor qt ¼

DtH
Dth

� �
and equals the

space refinement factor q if the model is restricted to a CFL (Cou-
rant Friedrichs Levy) stability condition. Step (1) corresponds to
the integration of the coarse grid model for one time step D tH

on X, while step (2) corresponds to the integration of the fine grid
model for qt time steps. The interpolator P makes use of qn

H and qnþ1
H

to produce space and time interpolations on the interface C. In
attempting to apply this algorithm to realistic ocean models,
several key issues are raised. When the time evolution of state vari-
ables is decomposed into two parts (barotropic and baroclinic), the
management of grid interaction becomes complex. This is the sub-
ject of the next section.

2.2. Coupling at the barotropic level

The most restrictive constraint on the time step of a primitive
equations ocean model is dictated by the speed of external gravity
waves. Several methods could be applied to filter out the fast mode
associated with external gravity waves, thus relaxing this con-
straint. A first choice is to completely remove these waves by
applying a rigid lid approximation (Bryan, 1969), leading to the



Fig. 2. Time filtering for a uniformly weighted filter am ¼ 1
MHþ1

� �
.

Fig. 3. Time integration at the baroclinic level. Top: parent grid. Bottom: child grid.
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resolution of a barotropic vorticity equation. An alternative ap-
proach is an implicit time-stepping method that filters external
gravity waves, thereby allowing integration of the free surface
equations at the slow mode time step (Dukowicz and Smith,
1994). For such models, the treatment of the fast mode in nested
grids has already been tackled in the literature. Laugier et al.
(1996) applied local defect correction methods for a rigid lid ocean
model, while more recently Haley and Lermusiaux (2010) intro-
duced strongly coupled embedding schemes for free-surface,
split-implicit ocean models.

Another widely used method is the split-explicit time integra-
tion method of Blumberg and Mellor (1987) and Killworth et al.
(1991). In this case, the barotropic time step is a ratio of the baro-
clinic time step and the barotropic mode is integrated separately. A
reported advantage of the split-explicit method is that there is no
need to solve a computationally expensive (at high resolution)
elliptic system, as opposed to the rigid lid and implicit methods
(Killworth et al., 1991). Perharps more importantly, on numerical
grounds, split-explicit methods also provide a better representa-
tion of Rossby waves speed than implicit methods that produce
large dispersion error. Therefore, new generation oceanic models
have generally adopted the split-explicit method, even though it
comes with additional complexity at an algorithmic level. Our
study proposes solutions to circumvent the difficulties associated
with the increased complexity of time splitting in the case of grid
nesting.

An important aspect of the split-explicit method is that once the
barotropic mode has been integrated, a filtering pass is required in
order to remove scales not resolved by the 3D solution (see Shche-
petkin and McWilliams, 2005, for a review of these filters),
although this may be avoided if the 2D time stepping algorithm
is dissipative enough. In order to compute a filtered value of fast
quantities (barotropic velocities and free surface) at time
tn+1 = tn + Dt, where Dt is the 3D time step increment, the period
of integration has to exceed time tn+1. In the case of grid nesting,
this leads to several difficulties that are described in the next par-
agraph. It should be noted that most existing nesting methods
avoid these difficulties by coupling parent and child grids at the
baroclinic level only. However, this simpler approach does not pro-
vide some of the desired properties of a full coupling between the
grids. In particular, it violates the previously mentioned constraint
that the model solution be unaffected by nesting in case where the
refinement coefficient is one.

2.2.1. Problem definition
Let M be the ratio of the baroclinic and barotropic time steps

Dt0 ¼ Dt
M

� �
and Mw be the number of time steps done in the baro-

tropic mode. Mw is dependent on the time filter applied for the fast
mode. As an example, Fig. 2 presents a uniformly weighted filter
over time interval [tn, tn + 2Dt] (in this case Mw = 2M).

The filtered variables are computed using the following
formula:
< q>nþ1 ¼
PMH

m¼1
amqm ð2Þ

where qm denotes an instantaneous barotropic variable (free surface
or vertically integrated transport) and where it is required that the
weights am be normalized and that the result of (2) be centered at
time tn + Dt, which is equivalent to

PMH

m¼0
am ¼ 1;

PMH

m¼0
amm ¼ M

Let us now consider the time integration of the embedded model
assuming a time refinement factor of 2. Fig. 3 represents the succes-
sive steps of time refinement at the baroclinic level while Fig. 4 de-
tails the barotropic integration.

From Fig. 4, it appears that the interaction scheme between
barotropic quantities at coarse and high resolution can not simply
be based on instantaneous values. The coarse grid values are com-
puted at a time (tn + 2Dt) greater than their high resolution equiv-
alent (tn + 3Dt/2), making it impossible to update the parent from
the child grid values. To solve this problem, we propose a method
based on interactions between intermediate averaged values of fast
quantities.
2.2.2. Coupling between filtered variables
Let us define the intermediate filtered variables at the barotrop-

ic time step a by the following expression

< q>a ¼
Pa

m¼0
am;aqm; 0 6 a 6 MH ð3Þ

where am,a are a new family of weights and where < q > a is re-
quired to be centered at time tn þ a

MH Dt 2 ½tn; tn þ Dt�. It is now pos-
sible to exchange all required information between parent and child
grid solutions through these new variables. During the first child
grid time step (step 2 in Fig. 5), the connection between parent



Fig. 4. Time integration at the barotropic level. The figure represents the position in time of the instantaneous barotropic quantities. The barotropic subcycles are restarted
from the previously computed filtered values. Top: parent grid. Bottom: child grid.
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and child grid variables, qH and qh, is done through the requirement
that

< qh>a ¼< qH>a=qt
()

Pa
m¼0

am;aqm
h ¼

Pa=qt

m¼0
am;a=qt

qm
H ð4Þ

ais assumed here to be a multiple of qt but linear interpolation in
time is applied when this is not the case. Eq. (4) is consistent since
<qh>a is centered at time tn þ a

MH Dth while < qH>a=qt
is centered at

time tn þ a=qt
MH DtH ¼ tn þ a

MH Dth. In step 3 of Fig. 5, this equation is
modified to give:

< qh>a ¼< qH>MH=qtþa=qt
ð5Þ

From (4) (or from (5)), we deduce the value of the fine grid variables
as a function of the coarse grid variables:

qa
h ¼

1
aa;a

Pa=qt

m¼0
am;a=qt

qm
H �

Pa�1

m¼0
am;aqm

h

 !
ð6Þ

and a similar (reversed) relation is used in the update step. Addi-
tionally, we require that the definition of <q>a is continuous over
the barotropic fine grid steps. Since in step 3, the instantaneous
variables are restarted (see Fig. 2) from a previous average value
Fig. 5. Time integration at the barotropic level. The figure represents the position in tim
grid.
equal to <q>n+1, we have to enforce < q>MH ¼< q>nþ1 which is
equivalent to

am;MH ¼ am

Given am,0 6m 6Mw, the weights of the original time filter, we fi-
nally obtain that the coefficients am,a of the intermediate filters
should satisfy the following relations

Pa
m¼0

am;a ¼ 1;
Pa

m¼0
am;am ¼ a

MH M; 8 0 6 a 6 MH

am;MH ¼ am; 0 6 m 6 MH

8><
>: ð7Þ

The way these coefficients are computed in practice is described in
the appendix. Fig. 6 shows intermediate weights at barotropic time
steps Mw/4, Mw/2 and Mw, for several typical filters. Here M is taken
to be 48 and the different filters are: (a) flat weights over [0:2M], (b)
flat weights over [M/2:3M/2], (c) cosine shape filter and (d) power
law shape filter (see Shchepetkin and McWilliams, 2005).

2.2.3. Computational advantage
Improvement of the physical solution expected by the treat-

ment of nesting at the barotropic level is paid for by added algo-
rithmic complexity. Nevertheless, it also has a computational
e of the intermediate filtered barotropic quantities. Top: parent grid. Bottom: child
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Fig. 6. The intermediate weights am,a for barotropic time step a = Mw/4, a = Mw/2, a = Mw and for different filtering algorithms. M = 48. The vertical lines indicate the desired
average values. Flat weights over [0:2 M] (top left), flat weights over [M/2:3 M/2] (top right), cosine shape filter (bottom left) and power law shape filter (bottom right).
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advantage. Nested grids only interact within an interface area
whose size is given by the coarse grid operators stencil. The coarse
grid solution in the fine grid domain affects neither the fine grid
solution nor the coarse grid solution outside the fine grid domain.
Therefore, the restriction steps of two-way nesting algorithms
need only be applied for coarse grid points located in this interface
area. On distributed-memory parallel computers, this significantly
reduces the amount of data that needs to be exchanged and the
computational gain can be important.

2.3. Update schemes

This section is devoted to the study of update (or restriction)
operators. For reasons explained in Section 2.4, we do not limit
ourselves to what is sometimes referred to as conservative update
schemes, i.e. area-weighted averages of the fine grid values. The
general design of an update operator should be based on the fol-
lowing two criteria:

� Transfer maximum information to the coarse grid for well-
resolved scales on this grid
� Filter scales not resolved on the coarse grid

We study three different update schemes in light of their Fou-
rier symbols: Average; Shapiro Filter; and Full-Weighting. We
present these schemes in the one-dimensional case for a mesh
refinement ratio of 3; the index i refers to the index of the child
grid point that coincides with the parent grid point:

� Average: The restriction operator is given by
1
3
ðui�1 þ ui þ uiþ1Þ

with Fourier symbol : AðhÞ ¼ 1
3
ð1þ 2 cos hÞ
where h = kDx 2 [0:p], k being the wavenumber.
� Shapiro filter: The restriction operator is given by
1
4
ðui�1 þ 2ui þ uiþ1Þ

with Fourier symbol : AðhÞ ¼ 1
2
ð1þ cos hÞ

� Full-Weighting operator: The restriction operator is given by
1
9
ðui�2 þ 2ui�1 þ 3ui þ 2uiþ1 þ uiþ2Þ

with Fourier symbol : AðhÞ ¼ 1
9
ð3þ 4 cos hþ 2 cos 2hÞ

The derivation of the full-weighting operator is linked to the
definition of so-called first and second orders of a restriction oper-
ator as defined by Hemker (2001) in the context of multigrid meth-
ods and briefly summarized here:

� A discrete restriction operator with Fourier symbol A(h) is of
first order (or low frequency order) m if m is the largest integer
such that
AðhÞ ¼ 1þ OðjhjmÞ; for jhj ! 0
� A discrete restriction operator with Fourier symbol A(h) is of
second order (or high frequency order) m if m is the largest inte-
ger such that
Aðhþ 2pp=qÞ ¼ OðjhjmÞ; for jhj ! 0; 8p 2�0;q½
Using these definitions, high order restriction operators can be
built for other mesh refinement ratios. It can be shown that the
full-weighting operator is second order accurate both at low and
high frequencies (A(h) = 1 + O(jhj2) and A(h + 2p/3) = O(jhj2)), that
the average operator is of first order 2 and second order 1 and that
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Fig. 7. Amplification factor for typical restriction operators (and for a mesh refinement factor of 3).

Fig. 8. Separation of dynamic and feedback interfaces on a Arakawa C-grid for a
mesh refinement factor of 3. Update occurs in the dark grey area; without interface
separation, tracer values and tangential velocities would also be updated in the
light grey area.
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the Shapiro filter is of first order 2 and second order 0. The symbols
are all real, so that there is no dispersion error. The curves of the
amplification factors are represented in Fig. 7. What is clearly vis-
ible, and will be emphasized by the numerical experiments, is that
usual restriction operators apart from the the full-weighting oper-
ator are not designed to properly damp subgrid scale features. In
practice, this defect has to be corrected by artificially increasing
diffusion near the parent/child interface (sponge layers).
Fig. 9. A coarse grid cell divided in nine fine grid cells on a C-grid.
2.3.1. Separation of dynamic and feedback interfaces
The so-called dynamic and feedback interfaces are sketched in

Fig. 8. The dynamic interface denotes the fine grid boundary where
the fine solution is forced by the coarse solution; the feedback
interface is the outer limit of the area where the coarse solution
is updated by the fine solution. There are several reasons for sepa-
rating dynamic and feedback interfaces (see Debreu and Blayo,
2008) that will be evaluated in the following idealized experi-
ments. One reason comes from the evidence that if noise is pro-
duced it will concentrate near the dynamic interface and thus
those interface values should not be used to update the parent grid.
2.3.2. Free surface, tracer and velocity updates
In a free surface ocean model, for conservation reasons, the dis-

crete time evolution of the free surface elevation can be written in
terms of the divergence of a barotropic transport (volumetric
fluxes):

gnþ1
i;j ¼ gn

i;j �
Dt

DxDy
Uiþ1

2;j
� Ui�1

2;j
þ Vi;jþ1

2
� Vi;j�1

2

h i
ð8Þ

where g is the free surface elevation, U and V are barotropic
transports in the x and y directions and i and j are the horizontal grid
indices. A consistent update scheme for free surface and barotropic
transport can be obtained by applying the restriction operator to
the right hand side of this equation. Let’s consider the situation
represented in Fig. 9 where the mesh refinement factor is equal to 3.

If the free surface restriction operator is a simple average of the
nine fine grid cells (and assuming no time refinement), the time
evolution of the updated free surface is given by:

gnþ1
ic ;jc
¼ gn

ic ;jc
� Dt

9Dxf Dyf
Uifþ3

2;jf�1 þ Uifþ3
2;jf
þ Uifþ3

2;jfþ1

� �h
� Uif�3

2;jf�1 þ Uif�3
2;jf
þ Uif�3

2;jfþ1

� �
þ Vif�1;jfþ3

2
þ Vif ;jfþ3

2
þ Vifþ1;jfþ3

2

� �
� Vif�1;jf�3

2
þ Vif ;jf�3

2
þ Vifþ1;jf�3

2

� �i



Fig. 10. The coarse resolution domain X on the left and the high resolution domain
x on the right for a C-grid with a mesh refinement factor of 3.
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where ic and jc are the indices in the coarse grid and if and jf in the
fine grid (see Fig. 9). In consistence with the average restriction
operator for free surface, the coarse grid barotropic transports can
be updated by the relations:

Uicþ1
2;jc
¼ Uifþ3

2;jf�1 þ Uifþ3
2;jf
þ Uifþ3

2;jfþ1

Vic ;jcþ1
2
¼ Vif�1;jfþ3

2
þ Vif ;jfþ3

2
þ Vifþ1;jfþ3

2

This corresponds for U to an injection in the x-direction and an aver-
age in the y-direction and reciprocally for V. This couple of restric-
tion operators (average for free surface, injection/average for
velocities) will be denoted in the following by update_mix_low.
The corresponding high order update schemes will be denoted by
update_mix_high and is the full-weighting operator on free surface,
which can be shown to lead for transport variables to a couple of
average/full-weighting restriction operators.

For constancy preservation, tracer values should also be up-
dated with the same update operator as the free surface and the
three-dimensional velocities (or more precisely volumetric fluxes)
should be updated with the same update operator as barotropic
velocities. Table 1 summarizes the different restriction operators
that will be evaluated.

2.4. Conservation properties by refluxing

On a uniform model grid, conservation is guaranteed when
numerical schemes are written in flux form. In two-way nesting
procedures, this property is generally lost at the grids interface. En-
forced conservation has several computational issues and imposes
strong requirements on the intergrid transfer operators that may in
turn lead to a loss of accuracy, as will be shown. However, this con-
straint is recommended for long term integrations. Therefore, after
reviewing the basic requirements for conservation on a nested
grid, we propose a flux correction algorithm that answers these
requirements and present a study of its numerical properties.

2.4.1. Definition and discretization
Let us consider a two dimensional domain and q the solution of

the following equation written in conservative form

@q
@t
þ @f
@x
þ @g
@y
¼ 0

where f and g may contain both advective and diffusive fluxes. Then,
assuming that the integral of fluxes f and g cancels along the bound-
aries of X, QX, integral of q over the domain X, is constant in time
(at the continuous level):

QXðtÞ ¼
Z

X
qðx; y; tÞdxdy ) dQXðtÞ

dt
¼
Z
@X

f dsþ
Z
@X

g ds ¼ 0

In the nested grid system, the quantity QX is defined by the summa-
tion over the high resolution domain x and its complement in X:

QX ¼ Qx þ QXnx
Table 1
Four choices of restriction operators for free surface (g), tracers (q) and velocities (u,v) on

Operator Direction (g,q)

Average x average
y average

Full-Weighting x full-weight
y full-weight

update_mix_low x average
y average

update_mix_high x full-weight
y full-weight
Let us now make the following assumptions for simplicity:

� As illustrated in Fig. 10, we consider a two dimensional domain
infinite in both x and y directions. The left (resp. right) part of
the domain is at coarse (resp. high) resolution. Note that the
black thick line in Fig. 10 refers here to the feedback interface
which is the relevant interface for conservation issues in two-
way nesting.
� The variable qn

i;j is cell centered
� The time stepping scheme is an explicit Euler scheme
an Arak

ing
ing

ing
ing
qnþ1
i;j ¼ qn

i;j �
Dt

DxDy
ðFiþ1

2;j
� Fi�1

2;j
Þ � Dt

DxDy
ðGi;jþ1

2
� Gi;j�1

2
Þ ð9Þ
where Fiþ1
2;j
;Gi;jþ1

2
are volumetric fluxes: Fiþ1

2;j
¼ fiþ1

2;j
Dy;Gi;jþ1

2
¼

gi;jþ1
2
Dx. In a finite volume framework, the definition of QXnx

at discrete level is unambiguously given by

Qn
Xnx ¼

P
i6ic ;j

DxcDyc qc;n
i;j

while on the high resolution domain x, Qn
x can be defined either

using fine grid point values:

QF;n
x ¼

P
iPif ;j

Dxf Dyf qf ;n
i;j ð10Þ
awa C-grid.

(u,U) (v,V)

average average
average average

full-weighting full-weighting
full-weighting full-weighting

copy average
average copy

average full-weighting
full-weighting average
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or using coarse grid point values:

Q C;n
x ¼

P
i>ic ;j

DxcDyc qc;n
i;j ð11Þ

In two-way applications, these two expressions are not indepen-

dent since, inside x, qc;n
i;j is a function of qf ;n

i;j

� �
i;j

given by the update

operator. Note also that these two expressions are strictly identical
only when the restriction operator is a simple area weighted aver-
age of the fine grid values.

Let’s for the moment assume that the first definition of Q n
x, Q F;n

x ,
is taken. At discrete level, QX at time t = tn is then given by

Q n
X ¼

P
i6ic ;j

DxcDyc qc;n
i;j þ

P
iPif ;j

Dxf Dyf qf ;n
i;j ð12Þ

where, as shown in Fig. 10, ic and if denote the nearest coarse and
fine grid indices to the left of the interface. Then after one time step,
according to Eq. (9) we obtain:

Q nþ1
X ¼ Qn

X � Dtc
P

j
Fc;n

icþ1
2;j
þ Dtf

Pqt�1

p¼0

P
j1

Pj1þq�1

jf¼j1

Ff ;nþp=qt

ifþ1
2;jf

¼ Qn
X � Dtc

P
j

Fc;n
icþ1

2;j
� F f ;n

icþ1
2;j

� �
ð13Þ

where

F f ;n
icþ1

2;j
¼ 1

qt

Pqt�1

p¼0

Pj1þq�1

jf¼j1

Ff ;nþp=qt

ifþ1
2;jf

ð14Þ

In general, there will be a misfit between the coarse and fine grid
fluxes so that the flux differences on the right hand side do not can-
cel and conservation is artificially lost: Qnþ1

X – Qn
X.

If, instead of QF;n
x , Qn

x is defined by Q C;n
x then the discrete integral

of Q is simply given by its summation over the entire coarse grid
domain:

Q n
X ¼

P
i;j

DxcDyc qc;n
i;j ð15Þ

In this case, an expression similar to Eq. (13) can be obtained, but
this time with a definition of F f ;n

icþ1
2;j

that is a function of the restric-
tion operator used for the quantity qc

i;j. If the average restriction
operator is chosen, we recover expression (14) which spatially cor-
responds for the fluxes to the update_mix_low operator described in
paragraph Section 2.3.2 (copy in the x-direction and average in the
y-direction). If the full-weighting restriction operator is chosen, it
can be shown that F f ;n

icþ1
2;j

should be computed from the fine grid
fluxes using the update_mix_high restriction operator (average in
the x-direction, full-weighting in the y-direction).

2.4.2. Flux correction algorithm
In some cases, the flux difference appearing in Eq. (13) can be

easily cancelled by applying conservative interpolation. For exam-
ple, from the time evolution of free surface elevation (Eq. (8)) with
no time refinement, it appears that a conservative interpolation of
the barotropic transport at the interface must lead to global vol-
ume conservation. An example of such second order conservative
interpolation for the barotropic transport can be found in Barth
et al. (2005). Additional difficulties arise when time refinement is
applied and when tracer conservation is desired. To overcome
those, we propose a flux correction algorithm inherited from the
adaptive mesh refinement community. It follows from the algo-
rithm of Berger and Oliger (1984) and Berger and Colella (1989).
The idea is to apply a modification of the coarse grid variables that
takes into account the misfit between coarse and fine grid fluxes.
Starting from Eq. (13), a correction is applied to the coarse grid var-
iable at time n + 1 near the boundary as follows:

qnþ1;�
ic ;j

¼ qnþ1
ic ;j
þ Dtc

DxcDyc
Fc;n

icþ1
2;j
� F f ;n

icþ1
2;j

� �
ð16Þ
This equation implies that the coarse grid variable at index j has
been integrated using, on the right interface, fluxes computed from
the fine grid solution:

qnþ1;H
ic ;j

¼ qn
ic ;j �

Dtc

DxcDyc
F f ;n

icþ1
2;j
� Fc;n

ic�1
2;j

� �
ð17Þ

The algorithm is easy to implement assuming that the time evolu-
tion of q can be written in terms of flux divergences, as was indeed
the case for the Euler time scheme. The program stores the fine grid
fluxes at the boundary and makes a summation in time and space
over the fine grid cells. Using this procedure, the overall scheme
can be made conservative whatever the update scheme is. It implies
that the update scheme does not have to be ‘‘conservative’’ (area-
weighted average of the fine grid values in a coarse grid cell) and
can be constructed entirely with regards to its filtering properties
(see Section 2.3).

2.4.3. Choice of Qx formulation
As presented in the previous paragraph, the choice of the discrete

value of Qx impacts the computation of the equivalent fine grid flux
F f ;n

icþ1
2;j

and so the flux correction algorithm. The choice between
formulations (10) and (11) can be based on the assumption that,
as explained in paragraph Section 2.3.2, consistent restriction
operators are used for free surface, tracers and velocities (e.g.
average/update_mix_low or full-weighting/update_mix_high). Then,
definition (11) naturally leads to the same restriction operators for
the computation of the equivalent fine grid flux. More importantly,
the use of the same restriction operators for velocities and fluxes
F f ;n

icþ1
2;j

is needed to maintain the property of constancy preservation
after the flux correction procedure. This formulation will thus be
preferred.

2.4.4. Analysis
It is worth analyzing the conservation scheme because, as will

be seen, it can be a source of instability. In order to perform a
numerical analysis, the problem is reduced to the one dimensional
advection equation modified by the flux correction term in Eq.
(16). Time refinement is omitted here for simplicity. In this partic-
ular case, Eq. (16) can be rewritten

qnþ1;�
ic

¼ qnþ1
ic
þ Dtc

Dxc
Fn

icþ1
2
� Fn

ifþ1
2

� �
since F f ;n

icþ1
2;j
¼ Fn

ifþ1
2

ð18Þ

where we have assumed that an average restriction operator is used
for qc

i so that both definitions (10) and (11) leads to Eq. (18).
Let us assume that the interpolation at mid-points of the origi-

nal advection scheme is an approximation of order p1:

qH

ifþ1
2
¼ gð. . . ; qif

; qifþ1; . . .Þ ¼ qifþ1=2 þ a
@p1 q
@xp1

ðDxf Þp1 þHOT ð19Þ

HOT stands for High Order Terms. Then the numerical flux is a con-
sistent approximation of the continuous flux at order p1, written
(assuming a linear flux function f):

Fn
ifþ1

2
¼ f qH

ifþ1
2

� �
¼ f ðqifþ1

2
Þ þ f a

@p1 q
@xp1

ðDxf Þp1

� �
þHOT

Doing the same for the coarse grid flux leads to

Fn
icþ1

2
¼ f ðqifþ1

2
Þ þ f a

@p1 q
@xp1

ðDxcÞp1

� �
þHOT

Let us further assume that the advection velocity u0 is constant so
that f is given by f(q) = u0 q. Expression (18) becomes:

qnþ1;�
ic

� qnþ1
ic
¼ u0

Dtc

Dxc
a
@p1 q
@xp1

ððDxcÞp1 � ðDxf Þp1 Þ
� 	

¼ u0Dtc a
@p1 q
@xp1

ðDxcÞp1�1ð1� 1=qp1 Þ
� 	

ð20Þ



Fig. 11. Evolution of surface elevation in the reference, non-nested, high resolution solution. The contour interval is 10 cm. The location of high resolution domain used in
nesting experiments is indicated.
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It follows from Eq. (20) that the order of approximation near the
interface is decreased to p1 � 1 by the flux correction algorithm.
Additionally, if the original advection scheme uses even-order
mid-point interpolation, it may affect stability because then (20)
may represent anti-diffusion. Moreover, as can be guessed, instabil-
ities are amplified when the mesh refinement ratio q is large.

2.5. The sponge layer

Inevitably, small scales produced on the fine grid need to be fil-
tered near the interface to improve continuity between coarse and
fine solutions. This is usually done through a so-called sponge
layer. In its design, we require that the filter only acts on the scales
that are unresolved by the coarse grid. One approach is to damp
the difference between coarse and fine grid values near the bound-
ary. In practice, it can be written using a Laplacian diffusion as
follows:

@qh

@t
¼ Gh þr � lr qh � qC

h

� �
where here qh denotes any quantities to be filtered (tracers and
dynamics) and qC

h its equivalent on the coarse grid. To be consistent,
qC
h must be defined using the restriction operator (used in the up-

date procedure). This can be written as

qC
h ¼ Ih

HIH
h

� �
qh

where Ih
H is an interpolation operator. In two-way nesting, IH

h qh cor-
responds to qH the coarse grid values. The sponge layer is then writ-
ten as:

@qh

@t
¼ Gh þr � lr qh � Ih

HqH

� �� �
where l is a coefficient ranging from its maximal value l0 at the
interface to 0 a few grid points away from it (usually at a distance
of 3 coarse grid cells). This sponge layer is applied both on momen-
tum and tracers. When applied on tracers, the diffusive fluxes are
stored and added to the advective fluxes for later use in the reflux-
ing algorithm Section 2.4.2.

3. A ROMS test case: baroclinic vortex

The algorithms presented in this paper were implemented in
the Regional Oceanic Modeling System (ROMS; Shchepetkin and



Fig. 12. Evolution of surface elevation in the coarse, non-nested, solution. The contour interval is 10 cm.
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McWilliams, 2005) and are here evaluated using the baroclinic vor-
tex test case. The idealized experiment of a baroclinic and initially
axisymmetric vortex propagating on a b-plane has been described
by McWilliams and Flierl (1979). It has been used to evaluate nest-
ing performances by Spall and Holland (1991) in the case of a rigid-
lid model. Its use has been extended by Penven et al. (2006) to free
surface models and ROMS one-way nesting. In these applications,
as in the present one, performance evaluation is based on the com-
parison between the nested solution and a reference solution,
which is computed on a fine grid over the whole domain.
3.1. Model configuration and simulations

A full description of initial conditions and model configuration
can be found in Penven et al. (2006) and are only summarized here.
The vortex is initialized as a Gaussian surface pressure distribution
with a maximum surface geostrophic velocity of 1 m.s�1 and a hor-
izontal e-folding scale of 60 km. We consider a baroclinic vortex in
the presence of a continuous background stratification, with no
motion below 2500 m. The initial horizontal velocities are in geo-
strophic equilibrium with the initial pressure field.
The grids are square, on a flat bottom (H0 = 5000 m), using a
b-plane approximation centered around 38.5� N. The parent grid
domain is 1800 km � 1800 km, while the child grid domain is
approximately 580 km � 580 km. We use 10 evenly spaced verti-
cal levels, no explicit horizontal viscosity unless specified in
sponge areas (there is implicit dissipation in the upstream biased
advection scheme), no vertical viscosity, and no bottom friction.
The Brünt–Vaissala frequency is fixed at N = 0.003 s�1. The hori-
zontal resolution of the coarse grid is 30 km and the mesh refine-
ment ratio is set to 3, leading to a resolution of 10 km for the child
grid. The parent domain is assumed unbounded, which requires
open boundary conditions on each side, as described by Marches-
iello et al. (2001). The evaluation of the nested solution is made
against a reference solution computed with high resolution
(10 km) on the whole parent grid domain. In all experiments,
we use the power law shape function to compute intermediate fil-
tered variables at the barotropic level since it is already used in
ROMS to filter external gravity waves in the barotropic/baroclinic
coupling.

The vortex evolution in the reference solution is depicted in
Fig. 11 for the free surface elevation. Due to b, the anticyclonic vor-
tex, initially axisymmetric, propagates south-westward and



Fig. 13. Evolution of surface elevation in the child grid domain for one-way (top), two-way (middle) and reference solutions (bottom). The two-way solution is obtained with
update_mix_high restriction, separate interfaces and sponge layer. The contour interval is 10 cm.

Fig. 14. Evolution of temperature [�C] in the child grid domain for one-way (top), two-way (middle) and reference solutions (bottom). The two-way solution is obtained with
update_mix_high retriction, separate interfaces and sponge layer. The contour interval is 0.2 �C.
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changes its shape by Rossby-wave dispersion. The vortex retains
part of its axisymmetric shape, but weakens as it emits a train of
weak-amplitude Rossby-waves mostly in its wake. As explained
by McWilliams and Flierl (1979), advective effects compensate
the b-related leakage, preserving the vortex pattern. In the coarse
resolution case, the advective axisymmetrisation effects are re-
duced and the vortex experiences strong dispersion, resulting in
loss of integrity (Fig. 12). When grid refinement is applied (Figs.



Fig. 15. Free surface elevation (on the coarse grid domain) after day 30, 60 and 90 (from left to right) for different update schemes (without sponge layer and without
interfaces separation).
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Mix Low
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One Way

Free Surface RMS error (%)
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Full Weighting
Mix Low
Mix High
One Way

Temperature RMS error (%)

Fig. 16. Normalized RMS error [%] in the vortex test case for free surface elevation (left) and temperature (right). In the nesting procedure, neither sponge layer nor interface
separation are applied.
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13 and 14) in either one-way or two-way mode, most of the high
resolution properties are recovered. However, two-way nesting is
clearly an improvement over one-way nesting, depending though
on the nesting algorithm, as will be shown.
3.2. Update schemes

In a first series of experiments, the performance of update
schemes presented in Section 2.3 are investigated. All the simula-
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Fig. 17. Normalized RMS error [%] in the vortex test case for free surface elevation (left) and temperature (right). In the nesting procedure, interface separation is applied
without sponge layer.
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Fig. 18. Normalized RMS error [%] in the vortex test case for free surface elevation (left) and temperature (right). In the nesting procedure, a sponge layer is applied but not
interface separation.
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tions are made without sponge layers and without separated dy-
namic and feedback interfaces. Fig. 15 shows the solutions ob-
tained using four different update schemes: average, full-
weighting, update_mix_low and update_mix_high. Note that addi-
tional experiments using either a direct-injection update scheme
(copy of child values at corresponding locations of the parent grid
with no spatial filtering) or the Shapiro update scheme are not
shown since they both lead to unstable solutions (the simulation
‘blows up’’ at day 3 for direct-injection and at day 7 for Shapiro).

The simulations based on the average and update_mix_low oper-
ators lead to noisy solutions where the coarse solution is contam-
inated by fine scale structures (Fig. 15). Normalized RMS errors are
given in Fig. 16; for comparison, it also includes the results from
the one-way simulation presented by Penven et al. (2006). This
analysis shows that usual updating procedures can be detrimental
to the physical solution and cause a degradation of the one-way
procedure (for example, Average update in Fig. 16). However, a
more sophisticated update scheme, such as the full-weighting,
can yield a 50% improvement over the one-way solution by
enhancing continuity at the grids interface. As stated earlier, the
average operator is unable to damp the small scale modes
approaching the interface, which leads to the degradation of the
solution. In the one-way and full-weighting two-way solutions,
the largest errors occur as the vortex crosses the interface (around
day 50) while using the average operator they occur much earlier,
when the first dispersed Rossby waves have reached the interface.
In the absence of additional diffusion, low order restriction opera-
tors (average, update_mix_low) are thus very sensitive to small
perturbations.

3.3. Sponge layer and separation of dynamical/feedback interfaces

Separation of dynamical and feedback interfaces requires the
application of a sponge layer to prevent the drift of the fine solu-
tion in the zone between dynamical and feedback interfaces. Inter-
faces separation alone does not improve and even increases RMS
errors (Fig. 17). In this case again, high order restriction operators
present lower RMS error than their low order equivalent. A sponge
layer alone (using maximum diffusivity l0 = 500 m2.s�1 for both
tracers and momentum) is not much better at reducing the noise
associated with low order restriction operators (Fig. 18). The com-
bination of both methods results in a clear improvement (by about
30%) for all simulations (Fig. 19). The normalized RMS error on free
surface does not exceed 12% (compared to 40% in one-way simula-
tions). This improvement results from the suppression of the feed-
back of the largest errors from the fine solution (generally located
at the closest point from the interface) into the coarse solution. The
fact that the solution is now much less sensitive to the choice of
restriction operator is the result of (1) not updating errors created
near the interface and (2) damping small scales by the sponge
layer, thus in effect replacing the inner-filtering of high order
restriction operators. Therefore, weaknesses of low order restric-
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Fig. 19. Normalized RMS error [%] in the vortex test case for free surface elevation [m] (left) and temperature (right). In the nesting procedure, both sponge layer and interface
separation are applied.
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Fig. 20. Time evolution of relative loss of volume (left) and temperature (right) resulting from not enforcing conservation in the two-way coupling. The subview inside the
left panel shows the small residual volume loss of Mix Low and Mix High schemes.
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tion operators can be partially overcome by additional techniques.
Yet, they remain sensitive to the choice of these techniques, in par-
ticular to diffusivity values as illustrated in the sponge-free case
(Fig. 17), and we expect that they perform differently on various
model applications. The robustness of high order operators will in-
deed be fully revealed in the realistic experiments of Section 4.

3.4. Conservation

We now analyze the effects of maintaining conservation using
the refluxing algorithm described in Section 2.4. As a first step,
the computation of the fluxes misfit between high and coarse res-
olution, as given by Eq. (13), are implemented as a diagnostic tool.
Fig. 20 shows the results of accumulated fluxes misfit for volume
(free surface) and temperature. Plotted quantities correspond to

dg ¼
Qn

g � Q 0
g

Q 0
g

; Q n
g ¼

Z
S
ðH0 þ gnÞdx;

dT ¼ Qn
T � Q0

T

Q 0
T

;Qn
T ¼

Z
X

Tndx

where the discrete expressions of Qn
g and Qn

T are computed accord-
ing to Eq. (15). Note that the subscripts in Q now design the vari-
ables g and T, and Q is integrated over the domain X. As
explained in paragraph Section 2.4.2, update_mix_low and update_-
mix_high operators are intrinsically more conservative. In particular,
they lead to a nearly exact conservation of volume. However, they
cannot prevent a heat loss.

Heat and mass loss can be exactly corrected by the refluxing
procedure. To assess whether this correction affects the other
properties of the nesting schemes, the normalized RMS errors for
both free surface and temperature are presented in Fig. 21 (where
the solutions with and without conservation are compared). Note
that this is done only for the update_mix_low and update_mix_high
operators since the other restriction operators do not preserve con-
stancy when the refluxing procedure is applied. In addition, the
sponge layer diffusion coefficient l0 was increased to a high value
of 1000 m2.s�1 in order to maintain stability in the simulations.
This is in agreement with the analysis of paragraph Section 2.4.4,
which predicts instability for the second-order mid-point interpo-
lation used in ROMS advection scheme (that globally produces a
third order accurate scheme in a finite difference sense). Other
experiments (not shown here) confirm that this increase of viscos-
ity does not affect the conclusion of our sensitivity study on con-
servation. This analysis shows that enforcement of conservation
leads to a small increase in RMS error, which is not in contradiction
with the analysis of Section 2.4.4.

3.5. Coarse grid improvement

Finally, we analyze the vortex solution in the parent domain
(outside the refinement area) starting from the time when it begins
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Fig. 21. Normalized RMS error [%] for free surface and temperature with and without conservation.
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Fig. 22. Normalized RMS error [%] on the coarse grid domain for free surface (left) and temperature (right) and for the one-way solution (the error is in this case the same as
in the uniformly coarse resolution case) and two-way solution.
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to cross the interface. Normalized RMS errors are indicated in
Fig. 22. When the vortex is located inside the refinement area,
the coarse solution error in two-way nesting is close to the fine
solution error which is very small. In one-way nesting, degradation
due to the dominance of wave dispersion over advective axisym-
metrization effects is rapidly apparent as the coarse solution gets
no feedback from the fine grid (Fig. 12). As the vortex crosses the
interface (around day 50), the two-way solution starts to degrade
as well. However, the error remains much smaller than in the
one-way experiment. This experiment illustrates the lasting bene-
fit of two-way coupling beyond the refinement area, a capability
that is of particular interest in the context of upscaling and tele-
connection processes.
4. Two-way nesting for the California Current System

The two-way nesting algorithm selected from the previous
analysis is now tested in a realistic configuration that covers the
full spectrum of dynamical scales and large topographic variations
(this is the same procedure as presented by Penven et al. (2006) for
the one-way algorithm).

The reference experiment (REF) is an equilibrium solution of the
California Current System (CCS) at 5 km resolution (Marchesiello
et al., 2003). It is compared with an equivalent simulation at
15 km resolution (LOW) and 2 experiments based on a 5 km coast-
al grid nested in this larger scale model. A first simulation is made
using only one-way nesting (1-WAY), the other is based on the
two-way methodology described above (2-WAY). Because ROMS
numerical schemes have evolved since its first applications in the
CCS (essentially the pressure gradient algorithm, equation of state,
barotropic time stepping and barotropic/baroclinic coupling algo-
rithm; see Shchepetkin and McWilliams, 2009, for a review), these
new solutions are similar but not identical to the results obtained
previously (Marchesiello et al., 2003; Penven et al., 2006). There
are also several differences in the configuration parameters. First,
the topography (based on GEBCO, http://www.gebco.net/) is
regridded to ensure volume equality between the nested grid
and REF. Second, the western boundary of the nested grid is pushed
100 km further offshore to encompass the main coastal transition
zone. Third, initial and large scale boundary conditions are derived,
using ROMSTOOLS (Penven et al., 2008), from the World Ocean At-
las 2005 (Conkright et al., 2002). Note that, as described by Penven
et al. (2006), a smooth transition between coarse and fine gridded
topography is provided within 5 coarse-grid points of the interface
(the topographies on the first two grid points are identical).

Algorithmic choices for two-way nesting in the CCS simulations
were made on the basis of both theoretical arguments and results
of the ideal test case presented earlier. These choices are: (1) nest-
ing at the barotropic level; (2) either ‘‘low’’ (Mix Low) or ‘‘high’’
(Mix High) order update schemes; (3) dynamical and feedback
interfaces separation (4) sponge layer acting on the difference be-
tween fine and coarse solutions (with maximum diffusivity
l0 = 250 m2.s�1 for tracers and l0 = 125 m2.s�1 for momentum).

http://www.gebco.net/


Fig. 23. Sea surface temperature [�C] for 8 June of model year 6. a: REF. b: LOW. c: 1-WAY. d: 2-WAY.
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Volume conservation is also constrained. However, tracer flux cor-
rection was not fully satisfying, with stability problems arising in
the course of the long-term simulation. We believe this to be a re-
sult of two main problems. In Subsections 2.4.4 and 3.4, we noted a
potential instability associated with the flux correction algorithm
when even order midpoint-interpolation are used, as is the case
in ROMS. But maybe more importantly, the connection area for
realistic simulations with complex topography needs particular
attention, especially when flux correction is applied. The latter re-
quires additional constraints on the discrete form of the topogra-
phy along the interface.2 Nevertheless, the absence of tracer
2 We are currently investing this issue. One possible solution could be an extension
of an algorithm proposed by Haley and Lermusiaux (2010, see their Appendix C.1.1):
topography smoothing, constrained by the slope parameter for reducing pressure
gradient errors, must be also made consistent with restriction operators in the
connection area and, in our case, with the flux correction procedure.
conservation enforcement in the following experiments did not lead
to any significant drift of the solutions.

All experiments are integrated for 10 years. Analyses are per-
formed from years 4 to 10. Fig. 23 represents sea surface tempera-
ture (SST) on June 8 of year 6 (same dates as in Penven et al., 2006)
for the 4 experiments. Typical summer SST patterns in REF
(Fig. 23(a)) represent upwelled coastal waters, upwelling fronts
and filaments extending from the major capes. These intra-sea-
sonal features are of chaotic nature (Marchesiello et al., 2003),
i.e., they cannot be compared individually at any particular time
but only in a statistical way. We will thus focus on patterns and
their potential alteration by the nested interface. Next, mean and
variance fields will be analysed, keeping in mind that 7 years of
sampling is too short to properly reduce the standard error of esti-
mators. Only large regional features will thus be compared as op-
posed to small-scale details.

In LOW (Fig. 23(b)), the fronts are more diffuse and the overall
pattern is smoother. Coastal upwelling is also less intense. As de-



Fig. 24. Sea surface vorticity [106 s�1] for 8 July of model year 5. a: REF. b: LOW. c: 1-WAY. d: 2-WAY.
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scribed by Penven et al. (2006), 1-WAY is able to recover the gen-
eral SST patterns observed in REF: upwelling fronts and filaments
(Fig. 23(c)). However, discontinuities are apparent at the parent–
child interface, while they never occur in the simulation with
two-way nesting (Fig. 23(d)).

Surface vorticity can be used as an indicator of flow discontinu-
ities at the interface. It is displayed in Fig. 24 for July 8 of year 5. In
REF (Fig. 24(a)), we recognize the strong negative/positive values
associated with coastal jets, upwelling filaments streaming off-
shore, and a collection of offshore cyclonic and anticyclonic eddies.
These structures almost disappear in LOW (Fig. 24(b)). In 1-WAY,
there is no major discernible discontinuity at the boundaries
(Fig. 24(c)), but there are meaningful differences with REF: eddies
tend to concentrate near the western interface, probably affecting
the offshore extension and propagation of coastal features. This
accumulation of eddy energy seems absent in 2-WAY (Fig. 24(d);
note the offshore eddy at [128�W, 38�N] which evolves around
the interface), resulting in turbulent patterns resembling those of
REF.
The mean sea surface height (SSH) in REF (Fig. 25(a)) exhibits
the 3 large meanders of the CCS described by Marchesiello et al.
(2003). In this new simulation, they appear slightly less prominent
but they are similarly located: off Cape Mendocino, Monterey Bay
and Point Conception. They are also present in LOW (Fig. 25-b) but
the detachment of the flow at Cape Mendocino is delayed, resulting
in a southward shift of the general pattern. In 1-WAY and 2-WAY
(Fig. 25(c) and (d)), the detachment at Cape Mendocino is similar
to REF, as well as the re-attachment of the flow along the coast
off Point Arena, and the detachment north of Monterey Bay. 1-
WAY amplifies the meanders near the southern boundary of the
child domain and underestimates the northern meander. Overall,
2-WAY is a closer solution to REF, albeit with some discrepancies
(stronger currents near the northern child boundary). This suggests
that the northern interface between coarse and fine grids is situ-
ated at a critical point with respect to the dynamics of the CCS,
as discussed by Penven et al. (2006).

The following comparisons illustrate the performance of nest-
ing in maintaining the mean statistical characteristics of mesoscale



Fig. 25. Mean sea surface height (SSH) [cm]. a: REF. b: LOW. c: 1-WAY. d: 2-WAY.
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variability. The SSH standard deviation (or root mean square: RMS
SSH) is a measure of CCS variability. In REF, maximum values of 6
to 8 cm are produced offshore in the core of the CCS (Fig. 26(a)); a
maximum of 8 cm is located off Cape Mendocino. RMS SSH is at
least 30% lower in LOW (Fig. 26(b)); 1-WAY and 2-WAY recover
most of the patterns observed in REF, but 1-WAY shows excessive
variability along the western interface (Fig. 26(c)), which is absent
from 2-WAY (Fig. 26(d)). Interestingly, some mesoscale variability
is preserved outside the refinement area in the two-way nested
solution, which emphasizes the improvement that refinement
may provide to connected areas.

A final experiment shows that 2-WAY is sensitive to the update
procedure, consistently with the baroclinic vortex test case: using
update_mix_low in place of update_mix_high, the solution appears
degraded (compare Fig. 27 with Figs. 25 and 26). This is particu-
larly true in the southern part of the child domain, around 35�N,
where excessive variability is generated close to the boundary by
update_mix_low in comparison with the reference solution and
the solution produced by update_mix_high (Fig. 27b and Fig. 26).
This result again illustrates the inability of low order update
schemes to filter unresolved scales, and the limited usefulness of
sponge layers.

These experiments provide a demonstration that the selected
two-way nested algorithm is stable and accurate for long-term
integrations of regional oceanic configurations. It also confirms
that two-way is an improvement to one-way nesting in various
ways: continuity of fine and coarse solutions at the grids interface;
dynamical integrity of the solutions in the refinement area (as a re-



Fig. 26. Root mean square of sea surface height (RMS SSH) [cm]. a: REF. b: LOW. c: 1-WAY. d: 2-WAY.
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sult of better interface transparency); and improvements outside
the refinement area.
5. Conclusion

Algorithms for the implementation of two-way interactions in a
split-explicit free surface ocean model were described. A new solu-
tion was proposed for the coupling between coarse and fine grid
solutions at the barotropic level based on the introduction of inter-
mediate averaged values. Solutions to the conservation problem
using a flux correction algorithm was proposed and its stability
was analyzed. The key role of the update scheme is also empha-
sized and the use of a full-weighting operator is proposed for its
excellent properties regarding the filtering of small scale features.

These developments were implemented in ROMS and tested in
the idealized framework of a baroclinic vortex. A comparison with
a reference solution computed at high resolution shows agreement
in the refinement area and improvements in the coarse grid area as
well. Normalized RMS errors do not exceed 12% for free surface
elevation and 14% for temperature after 100 days of integration.
They are small in comparison with one-way simulations and previ-
ous two-way implementations tested with the same idealized case.

The selected nesting algorithm is part of ROMS_AGRIF (a nested
version of ROMS) and is freely available under CeCILL-C license at
the ROMS_AGRIF website (http://roms.mpl.ird.fr/). It is fully com-
patible with ROMS parallel capabilities on both shared and distrib-
uted memory architectures (OPEN_MP or Message Passive
Interface protocols). It has been successfully tested in a realistic
simulation of the California Current System and clearly improves
over one-way nested algorithms on interface continuity and
dynamical integrity of the fine and coarse solutions. The nesting
implementation of ROMS_AGRIF allows several levels of embed-
ding and several grids at one particular level. These capabilities,
combined with the inner qualities of our two-way nesting algo-

http://roms.mpl.ird.fr/


Fig. 27. Mean and RMS SSH [cm] in the 2-WAY experiment with update_mix_low.
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rithm and generally high-order accuracy of ROMS numerics, allow
for realistic simulations of coastal and ocean dynamics at multiple
scales, and of upscaling and teleconnection problems.

Appendix A. Weights computation

To obtain intermediate averaged values, there are several ways
to compute weights satisfying (7). Here, a simple method is de-
scribed. Weights for a = Mw are fixed by the second condition in
(7). The other weights are defined by a reccurence formula back-
ward in time. If we suppose that am,a are normalized and centered
at time t ¼ tn þ a

MH Dt then we search for weights am,a�1 normalized
and centered at time t ¼ tn þ ða�1Þ

MH Dt with a simple combination:

am;a�1 ¼ l am;a þ m amþ1;a ðA:1Þ

It can be shown that normalization and centering respectively im-
ply the two following relations to be satisfied by l and m

l ð1� aa;aÞ þ m ð1� a0;aÞ ¼ 1 ðA:2Þ

l a
M0 M � aa;aa
� �

þ m
a

M0 M � 1þ a0;a

� �
¼ a� 1

M0 M ðA:3Þ

Eqs. (A.2) and (A.3) are solved for (l,m). The discriminant of the sys-
tem is given by

D ¼ a
M0 Mða0;a � aa;aÞ þ ½1� a0;a�½ðaþ 1Þaa;a � 1�

There is one particular case for which the discriminant vanishes:
the case of flat weights over [1:Mw] for which MH ¼
2M; am;MH ¼ 1

MHþ1
;8m. The discriminant vanishes but the system is

compatible since both Eqs. (A.2), (A.3) can be rewritten as

lþ m ¼ MH þ 1
MH

From (A.1) am;MH�1 ¼ 1
MH and by recurrence

am;a ¼
1

aþ 1
; 8a;8m
The intermediate coefficients are simply rescaled from the original
ones. In more general cases, it seems difficult to find conditions on
am so that the discriminant never vanishes. For all typical tested fil-
ters, it does not.
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